1
|
Jiang Z, He M, Young C, Cai J, Xu Y, Jiang Y, Li H, Yang M, Tong Q. Dopaminergic Neurons in Zona Incerta Drives Appetitive Self-Grooming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308974. [PMID: 39099402 PMCID: PMC11422805 DOI: 10.1002/advs.202308974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/07/2024] [Indexed: 08/06/2024]
Abstract
Dopaminergic (DA) neurons are known to play a key role in controlling behaviors. While DA neurons in other brain regions are extensively characterized, those in zona incerta (ZITH or A13) receive much less attention and their function remains to be defined. Here it is shown that optogenetic stimulation of these neurons elicited intensive self-grooming behaviors and promoted place preference, which can be enhanced by training but cannot be converted into contextual memory. Interestingly, the same stimulation increased DA release to periaqueductal grey (PAG) neurons and local PAG antagonism of DA action reduced the elicited self-grooming. In addition, A13 neurons increased their activity in response to various external stimuli and during natural self-grooming episodes. Finally, monosynaptic retrograde tracing showed that the paraventricular hypothalamus represents one of the major upstream brain regions to A13 neurons. Taken together, these results reveal that A13 neurons are one of the brain sites that promote appetitive self-grooming involving DA release to the PAG.
Collapse
Affiliation(s)
- Zhiying Jiang
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Michelle He
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Summer Undergraduate Research Program, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, 02215, USA
| | - Claire Young
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jing Cai
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanyan Jiang
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hongli Li
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Maojie Yang
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qingchun Tong
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX, 77030, USA
| |
Collapse
|
2
|
Li G, Lu C, Yin M, Wang P, Zhang P, Wu J, Wang W, Wang D, Wang M, Liu J, Lin X, Zhang JX, Wang Z, Yu Y, Zhang YF. Neural substrates for regulating self-grooming behavior in rodents. J Zhejiang Univ Sci B 2024; 25:841-856. [PMID: 39420521 PMCID: PMC11494162 DOI: 10.1631/jzus.b2300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 07/13/2024]
Abstract
Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.
Collapse
Affiliation(s)
- Guanqing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Chanyi Lu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miaomiao Yin
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100101, China
| | - Pengbo Zhang
- Department of Gastrointestinal Surgery, the People's Hospital of Zhaoyuan City, Zhaoyuan 265400, China
| | - Jialiang Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqiang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Ding Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mengyue Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiahan Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xinghan Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenshan Wang
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yiqun Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China. ,
- Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China. ,
- Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China. ,
| | - Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ,
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China. ,
| |
Collapse
|
3
|
Direktor M, Gass P, Inta D. Understanding the Therapeutic Action of Antipsychotics: From Molecular to Cellular Targets With Focus on the Islands of Calleja. Int J Neuropsychopharmacol 2024; 27:pyae018. [PMID: 38629703 PMCID: PMC11046981 DOI: 10.1093/ijnp/pyae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding of the pathophysiology of schizophrenia as well as the mechanisms of action of antipsychotic drugs remains a challenge for psychiatry. The demonstration of the therapeutic efficacy of several new atypical drugs targeting multiple different receptors, apart from the classical dopamine D2 receptor as initially postulated unique antipsychotic target, complicated even more conceptualization efforts. Here we discuss results suggesting a main role of the islands of Calleja, still poorly studied GABAergic granule cell clusters in the ventral striatum, as cellular targets of several innovative atypical antipsychotics (clozapine, cariprazine, and xanomeline/emraclidine) effective in treating also negative symptoms of schizophrenia. We will emphasize the potential role of dopamine D3 and M4 muscarinic acetylcholine receptor expressed at the highest level by the islands of Calleja, as well as their involvement in schizophrenia-associated neurocircuitries. Finally, we will discuss the implications of new data showing ongoing adult neurogenesis of the islands of Calleja as a very promising antipsychotic target linking long-life neurodevelopment and dopaminergic dysfunction in the striatum.
Collapse
Affiliation(s)
- Merve Direktor
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany (Mrs Direktor and Dr Gass)
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany (Mrs Direktor and Dr Gass)
| | - Dragos Inta
- Translational Psychiatry, Department of Community Health , and Food Research and Innovation Center (FRIC)
- University of Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Switzerland
| |
Collapse
|
4
|
Zhang YF, Wu J, Wang Y, Johnson NL, Bhattarai JP, Li G, Wang W, Guevara C, Shoenhard H, Fuccillo MV, Wesson DW, Ma M. Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice. Nat Commun 2023; 14:6887. [PMID: 37898623 PMCID: PMC10613228 DOI: 10.1038/s41467-023-42662-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
The ventral striatum is a reward center implicated in the pathophysiology of depression. It contains islands of Calleja, clusters of dopamine D3 receptor-expressing granule cells, predominantly in the olfactory tubercle (OT). These OT D3 neurons regulate self-grooming, a repetitive behavior manifested in affective disorders. Here we show that chronic restraint stress (CRS) induces robust depression-like behaviors in mice and decreases excitability of OT D3 neurons. Ablation or inhibition of these neurons leads to depression-like behaviors, whereas their activation ameliorates CRS-induced depression-like behaviors. Moreover, activation of OT D3 neurons has a rewarding effect, which diminishes when grooming is blocked. Finally, we propose a model that explains how OT D3 neurons may influence dopamine release via synaptic connections with OT spiny projection neurons (SPNs) that project to midbrain dopamine neurons. Our study reveals a crucial role of OT D3 neurons in bidirectionally mediating depression-like behaviors, suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Jialiang Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Yingqi Wang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Natalie L Johnson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Guanqing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Wenqiang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Camilo Guevara
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Shoenhard
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Rebik A, Broshevitskaya N, Kuzhuget S, Aleksandrov P, Abbasova K, Zaichenko M, Midzyanovskaya I. Audiogenic Seizures and Social Deficits: No Aggravation Found in Krushinsky-Molodkina Rats. Biomedicines 2023; 11:2566. [PMID: 37761007 PMCID: PMC10526393 DOI: 10.3390/biomedicines11092566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Epilepsy or epileptic syndromes affect more than 70 million people, often comorbid with autism spectrum disorders (ASD). Seizures are concerned as a factor for social regression in ASD. A stepwise experimental approach to this problem requires an animal model to provoke seizures and monitor subsequent behavior. We used rats of the Krushinsky-Molodkina (KM) strain as a validated inbred genetic model for human temporal lobe epilepsy, with recently described social deficiency and hypolocomotion. Generalized tonic-clonic seizures in KM rats are sound-triggered, thus being controlled events in drug-naïve animals. We studied whether seizure experience would aggravate contact deficits in these animals. Locomotor and contact parameters were registered in "the elevated plus maze", "socially enriched open field", and "social novelty/social preference tests" before and after sound-provoked seizures. The triple seizure provocations minimally affected the contact behavior. The lack of social drive in KM rats was not accompanied by a submissive phenotype, as tested in "the tube dominance test", but featured with a poor contact repertoire. Here, we confirmed our previous findings on social deficits in KM rats. The contact deficiency was dissociated from hypolocomotion and anxiety and did not correlate with seizure experience. It was established that experience of rare, generalized tonic-clonic convulsions did not lead to an impending regress in contact motivation, as seen in an animal model of genetic epilepsy and comorbid social deficiency. One of the oldest animal models for epilepsy has a translational potential to study mechanisms of social behavioral deficits in future neurophysiological and pharmacological research.
Collapse
Affiliation(s)
- Anastasiya Rebik
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Nadezda Broshevitskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Syldys Kuzhuget
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (K.A.)
| | - Pavel Aleksandrov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Kenul Abbasova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (K.A.)
| | - Maria Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Inna Midzyanovskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| |
Collapse
|
6
|
Rai AR, Joy T, Poojari M, Pai MM, Massand A, Murlimanju BV. Role of Acorus calamus in preventing depression, anxiety, and oxidative stress in long-term socially isolated rats. Vet World 2023; 16:1755-1764. [PMID: 37766700 PMCID: PMC10521175 DOI: 10.14202/vetworld.2023.1755-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/22/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Social isolation stress (SIS) and individual housing have been shown to cause abnormal cognitive insufficiencies, altered anxiety levels, and signs of psychiatric diseases. Acorus calamus (AC), commonly known as Sweet Flag, has been widely used in India to treat neurological, metabolic, and respiratory disorders, indicating its potential therapeutic value. This study aimed to determine the antidepressant and antioxidative effects of AC on rats subjected to long-term, social isolation-induced stress. Materials and Methods This study involved 2-month-old male rats (24) weighing approximately 180-200 g bred in-house. The rats were divided into four groups (n = 6): Group 1 received saline, Group 2 received SIS, Group 3 received only 50 mg/kg AC, and Group 4 received 50 mg/kg AC and SIS for 6 weeks. After this, behavioral, biochemical, and neuronal assays were conducted. Results Behavioral experiments showed significantly higher activity levels (p < 0.001) in AC-treated rats than in the SIS group. In addition, rats subjected to SIS with AC treatment exhibited enhanced total antioxidants, superoxide dismutase, and neuronal assays compared to rats subjected to SIS alone. Conclusion Acorus calamus treatment improved the antidepressant and antioxidant potential against SIS in rat brain tissue. Moreover, we proved that AC can effectively reverse the neurotoxicity induced by SIS in animal models. As we battle against the coronavirus disease 2019 pandemic and social isolation, AC could be considered a supplementary treatment to alleviate depressive-like symptoms in our present-day lifestyle.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, St. John’s, Antigua, West Indies
| | - Meghana Poojari
- Department of Anatomy, Basaveshwara Medical College and Hospital, Chitradurga, India
| | - Mangala M. Pai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Amit Massand
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Browne LP, Crespo A, Grubb MS. Rapid presynaptic maturation in naturally regenerating axons of the adult mouse olfactory nerve. Cell Rep 2022; 41:111750. [PMID: 36476871 DOI: 10.1016/j.celrep.2022.111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Successful neuronal regeneration requires the reestablishment of synaptic connectivity. This process requires the reconstitution of presynaptic neurotransmitter release, which we investigate here in a model of entirely natural regeneration. After toxin-induced injury, olfactory sensory neurons in the adult mouse olfactory epithelium can regenerate fully, sending axons via the olfactory nerve to reestablish synaptic contact with postsynaptic partners in the olfactory bulb. Using electrophysiological recordings in acute slices, we find that, after initial recontact, functional connectivity in this system is rapidly established. Reconnecting presynaptic terminals have almost mature functional properties, including high release probability and strong capacity for presynaptic inhibition. Release probability then matures quickly, rendering reestablished terminals functionally indistinguishable from controls just 1 week after initial contact. These data show that successful synaptic regeneration in the adult mammalian brain is almost a "plug-and-play" process, with presynaptic terminals undergoing a rapid phase of functional maturation as they reintegrate into target networks.
Collapse
Affiliation(s)
- Lorcan P Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|