1
|
Dentel B, Angeles-Perez L, Flores AY, Lei K, Ren C, Sanchez AP, Tsai PT. Neuronal cell type specific roles for Nprl2 in neurodevelopmental disorder-relevant behaviors. Neurobiol Dis 2025; 205:106790. [PMID: 39765274 DOI: 10.1016/j.nbd.2025.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and Neurodevelopmental Disorders (NDDs) (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al., 2018; Dentel et al., 2022); however, studies focused on understanding mechanisms contributing to NDD-relevant behaviors are lacking, especially studies understanding the contributions of GATOR1's critical GAP catalytic subunit, nitrogen permease regulator like-2 (Nprl2). Given the clinical phenotypes observed in patients with Nprl2 mutations, in this study, we sought to investigate the neuronal cell type contributions of Nprl2 to NDD behaviors. We conditionally deleted Nprl2 broadly in most neurons (Synapsin1cre), in inhibitory neurons only (Vgatcre), and in Purkinje cells within the cerebellum (L7cre). Broad neuronal deletion of Nprl2 resulted in seizures, social and learning deficits, and hyperactivity. In contrast, deleting Nprl2 from inhibitory neurons led to increased motor learning, hyperactive behavior, in addition to social and learning deficits. Lastly, Purkinje cell (PC) loss of Nprl2 also led to learning and social deficits but did not affect locomotor activity. These phenotypes enhance understanding of the spectrum of disease found in human populations with GATOR1 loss of function and highlight the significance of distinct cellular populations to NDD-related behaviors. SIGNIFICANCE STATEMENT: We aim to elucidate the neuronal-specific contributions of nitrogen permease regulator like-2 (Nprl2) to its neurodevelopmental disorder (NDD)-relevant phenotypes. We conditionally deleted Nprl2 broadly in neurons (Syn1cre), in inhibitory neurons (Vgatcre), and in cerebellar Purkinje cells (L7cre). We identify seizures only in the Syn1cre conditional mutant (cKO); hyperactivity, learning difficulties, social deficits, and impulsivity in the Syn1cre and Vgatcre cKOs; and social deficits, and fear learning deficits in L7cre cKOs. To our knowledge, we are the first to describe the behavioral contributions of Nprl2's function across multiple cell types. Our findings highlight both critical roles for Nprl2 in learning and behavior and also distinct contributions of select neuronal populations to these NDD-relevant behaviors.
Collapse
Affiliation(s)
- Brianne Dentel
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Lidiette Angeles-Perez
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Abigail Y Flores
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Katherine Lei
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Chongyu Ren
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Andrea Pineda Sanchez
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Peter T Tsai
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Psychiatry, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Neuroscience; O'Donnell Brain Institute, Dallas, TX, United States of America.
| |
Collapse
|
2
|
Kang K, Wu Y, Gan H, Yang B, Xiao H, Wang D, Qiu H, Dong X, Tang H, Zhai X. Pathophysiological mechanisms underlying the development of focal cortical dysplasia and their association with epilepsy: Experimental models as a research approach. Seizure 2024; 121:176-185. [PMID: 39191070 DOI: 10.1016/j.seizure.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Focal cortical dysplasia (FCD) is a structural lesion that is the most common anatomical lesion identified in children, and the second most common in adults with drug-resistant focal-onset epilepsy. These lesions vary in size, location, and histopathological manifestations. FCDs are classified into three subtypes associated with loss-of-function mutations in PI3K/AKT, TSC1/TSC2, RHEB, and DEPDC/NPRL2/NPRL3. During the decades of research into FCD, experimental models have played an irreplaceable role in the research design of studies investigating disease pathogenesis, pathophysiology, and treatment. Further, the establishment of FCD experimental models has moved the field forward by (1) revealing the cellular processes and signaling pathways underlying FCD pathogenesis and (2) varying the methods and materials to study the function of FCD proteins. Currently, FCD experimental models are predominantly murine, with each model providing unique insights into FCD lesions. This review briefly summarizes the pathology and molecular functions of FCD, further comparing the available modeling methods and indexes, as well as the utilization of models, followed by an analysis of the similarities, advantages, and disadvantages between these models and human FCD.
Collapse
Affiliation(s)
- Kaiyi Kang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Yuxin Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hui Gan
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Baohui Yang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China; Department of Neurosurgery, Laboratory of Neurosurgery, Institute of Neurology, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Difei Wang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hanli Qiu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xinyu Dong
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Haotian Tang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China.
| |
Collapse
|
3
|
Errichiello E, Lecca M, Vantaggiato C, Motta Z, Zanotta N, Zucca C, Bertuzzo S, Piubelli L, Pollegioni L, Bonaglia MC. Further evidence supporting the role of GTDC1 in glycine metabolism and neurodevelopmental disorders. Eur J Hum Genet 2024; 32:920-927. [PMID: 38605125 PMCID: PMC11291697 DOI: 10.1038/s41431-024-01603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Copy number variants (CNVs) represent the genetic cause of about 15-20% of neurodevelopmental disorders (NDDs). We identified a ~67 kb de novo intragenic deletion on chromosome 2q22.3 in a female individual showing a developmental encephalopathy characterised by epilepsy, severe intellectual disability, speech delay, microcephaly, and thin corpus callosum with facial dysmorphisms. The microdeletion involved exons 5-6 of GTDC1, encoding a putative glycosyltransferase, whose expression is particularly enriched in the nervous system. In a previous study, a balanced de novo translocation encompassing GTDC1 was reported in a male child with global developmental delay and delayed speech and language development. Based on these premises, we explored the transcriptomic profile of our proband to evaluate the functional consequences of the novel GTDC1 de novo intragenic deletion in relation to the observed neurodevelopmental phenotype. RNA-seq on the proband's lymphoblastoid cell line (LCL) showed expression changes of glycine/serine and cytokine/chemokine signalling pathways, which are related to neurodevelopment and epileptogenesis. Subsequent analysis by ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) revealed increased levels of glycine in the proband's LCL and serum compared to matched controls. Given that an increased level of glycine has been observed in the plasma samples of individuals with Rett syndrome, a condition sharing epilepsy, microcephaly, and intellectual disability with our proband, we proposed that the GTDC1 downregulation is implicated in neurodevelopmental impairment by altering glycine metabolism. Furthermore, our findings expanded the phenotypic spectrum of the novel GTDC1-related condition, including microcephaly and epilepsy among relevant clinical features.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicoletta Zanotta
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Claudio Zucca
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Sara Bertuzzo
- Laboratory of Cytogenetics, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | |
Collapse
|
4
|
Vermeulen I, Rodriguez-Alvarez N, François L, Viot D, Poosti F, Aronica E, Dedeurwaerdere S, Barton P, Cillero-Pastor B, Heeren RMA. Spatial omics reveals molecular changes in focal cortical dysplasia type II. Neurobiol Dis 2024; 195:106491. [PMID: 38575092 DOI: 10.1016/j.nbd.2024.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
Focal cortical dysplasia (FCD) represents a group of diverse localized cortical lesions that are highly epileptogenic and occur due to abnormal brain development caused by genetic mutations, involving the mammalian target of rapamycin (mTOR). These somatic mutations lead to mosaicism in the affected brain, posing challenges to unravel the direct and indirect functional consequences of these mutations. To comprehensively characterize the impact of mTOR mutations on the brain, we employed here a multimodal approach in a preclinical mouse model of FCD type II (Rheb), focusing on spatial omics techniques to define the proteomic and lipidomic changes. Mass Spectrometry Imaging (MSI) combined with fluorescence imaging and label free proteomics, revealed insight into the brain's lipidome and proteome within the FCD type II affected region in the mouse model. MSI visualized disrupted neuronal migration and differential lipid distribution including a reduction in sulfatides in the FCD type II-affected region, which play a role in brain myelination. MSI-guided laser capture microdissection (LMD) was conducted on FCD type II and control regions, followed by label free proteomics, revealing changes in myelination pathways by oligodendrocytes. Surgical resections of FCD type IIb and postmortem human cortex were analyzed by bulk transcriptomics to unravel the interplay between genetic mutations and molecular changes in FCD type II. Our comparative analysis of protein pathways and enriched Gene Ontology pathways related to myelination in the FCD type II-affected mouse model and human FCD type IIb transcriptomics highlights the animal model's translational value. This dual approach, including mouse model proteomics and human transcriptomics strengthens our understanding of the functional consequences arising from somatic mutations in FCD type II, as well as the identification of pathways that may be used as therapeutic strategies in the future.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | - Liesbeth François
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Delphine Viot
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Fariba Poosti
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, De Boelelaan 1108, 1081 HV Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 3, 2103 SW Heemstede, the Netherlands
| | | | - Patrick Barton
- UCB Pharma, 216 Bath Rd, Slough, SL1 3WE Berkshire, United Kingdom
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Cell Biology-Inspired Tissue Engineering (cBITE), MERLN, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|