1
|
Zuo X, Sun M, Bai H, Zhang S, Luan J, Yu Q, Fu Z, Zhao Q, Sun M, Zhao X, Feng X. The effects of 17β-trenbolone and bisphenol A on sexual behavior and social dominance via the hypothalamic-pituitary-gonadal axis in male mice. J Environ Sci (China) 2025; 151:54-67. [PMID: 39481959 DOI: 10.1016/j.jes.2024.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
17β-Trenbolone (17-TB) is well documented as an environmental endocrine disruptor in aquatic biological studies, but its effects on mammals remain poorly understood. Furthermore, 17-TB acts as a hormone with properties similar to testosterone, and the consequences of juvenile exposure on adult social behavior remain uncertain. Bisphenol A (BPA) acts as an estrogen-like hormone, compared to 17-TB. Three-week-old male Balb/c mice were exposed orally to 17-TB (100 µg/(kg·day)) and BPA (4 mg/(kg·day)) for 28 days. Assessments of social interactions and a three-chamber test showed that 17-TB increased virility in male mice, intensified both male and female sexual behavior, and attracted and accepted female mice. It also increased social dominance through tube tests in male mice and markedly activated the c-Fos+ immune response in the medial prefrontal cortex (mPFC) and basal amygdala (BLA). ELISA data showed that 17-TB and BPA exposure significantly affected serum gonadotropin-releasing hormone (GnRH), growth hormone (GH), estradiol (E2), and luteinizing hormone (LH) levels, as well as testicular lesions and androgen receptor (ARβ) and estrogen receptor (ERα) synthesis. Testicular transcriptomic analysis further confirmed that could disrupt steroid synthesis and linoleic acid-related biometabolic processes. These findings suggest the influence of 17-TB and BPA exposure on sexual behavior and fertility in male mice, possibly through modulation of the hypothalamic-pituitary-gonadal axis. This study provides insights relevant to human reproductive health and neuro-social behavioral research, and the potential risk of environmental disturbances should not be overlooked.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Minghe Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Xu W, Chen K, Yuan Y, Guo M, Dong Q, Cui M. Ring finger protein 216 loss-of-function induces white matter hyperintensities by inhibiting oligodendroglia proliferation. Cell Biochem Funct 2024; 42:e4057. [PMID: 38853469 DOI: 10.1002/cbf.4057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/12/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
White matter hyperintensities (WMHs) refer to a group of diseases with numerous etiologies while oligodendrocytes remain the centerpiece in the pathogenesis of WMHs. Ring Finger Protein 216 (RNF216) encodes a ubiquitin ligase, and its mutation begets WMHs, ataxia, and cognitive decline in patients. Yet no study has revealed the function of RNF216 in oligodendroglia and WHIs before. In this study, we summarized the phenotypes of RNF216-mutation cases and explored the normal distribution of RNF216 in distinct brain regions and neuronal cells by bioinformatic analysis. Furthermore, MO3.13, a human oligodendrocyte cell line, was applied to study the function alteration after RNF216 knockdown. As a result, WMHs were the most common symptom in RNF216-mutated diseases, and RNF216 was indeed relatively enriched in corpus callosum and oligodendroglia in humans. The downregulation of RNF216 in oligodendroglia remarkably hampered cell proliferation by inhibiting the Akt pathway while having no significant effect on cell injury and oligodendrocyte maturation. Combining clinical, bioinformatical, and experimental evidence, our study implied the pivotal role of RNF216 in WMHs which might serve as a potent target in the therapy of WMHs.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
George AJ, Wei W, Pyaram DN, Gomez M, Shree N, Kadirvelu J, Lail H, Wanders D, Murphy AZ, Mabb AM. Gordon Holmes Syndrome Model Mice Exhibit Alterations in Microglia, Age, and Sex-Specific Disruptions in Cognitive and Proprioceptive Function. eNeuro 2024; 11:ENEURO.0074-23.2023. [PMID: 38164552 PMCID: PMC10849025 DOI: 10.1523/eneuro.0074-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
Gordon Holmes syndrome (GHS) is a neurological disorder associated with neuroendocrine, cognitive, and motor impairments with corresponding neurodegeneration. Mutations in the E3 ubiquitin ligase RNF216 are strongly linked to GHS. Previous studies show that deletion of Rnf216 in mice led to sex-specific neuroendocrine dysfunction due to disruptions in the hypothalamic-pituitary-gonadal axis. To address RNF216 action in cognitive and motor functions, we tested Rnf216 knock-out (KO) mice in a battery of motor and learning tasks for a duration of 1 year. Although male and female KO mice did not demonstrate prominent motor phenotypes, KO females displayed abnormal limb clasping. KO mice also showed age-dependent strategy and associative learning impairments with sex-dependent alterations of microglia in the hippocampus and cortex. Additionally, KO males but not females had more negative resting membrane potentials in the CA1 hippocampus without any changes in miniature excitatory postsynaptic current (mEPSC) frequencies or amplitudes. Our findings show that constitutive deletion of Rnf216 alters microglia and neuronal excitability, which may provide insights into the etiology of sex-specific impairments in GHS.
Collapse
Affiliation(s)
- Arlene J George
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Dhanya N Pyaram
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| | - Morgan Gomez
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | - Nitheyaa Shree
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | | | - Hannah Lail
- Department of Nutrition, Georgia State University, Atlanta 30303, Georgia
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta 30303, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta 30302, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta 30303, Georgia
| |
Collapse
|
4
|
Rahimi K, Riyahi M, Sajedianfard J, Nazifi S. Effects of intracerebroventricular administration of calcitonin gene-related peptide (CGRP) on sex hormones and sperm quality in rats. Ann Med Surg (Lond) 2023; 85:5454-5458. [PMID: 37915664 PMCID: PMC10617940 DOI: 10.1097/ms9.0000000000001252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/19/2023] [Indexed: 11/03/2023] Open
Abstract
Background Therapeutic strategies with calcitonin gene-related peptide (CGRP) or its receptor have been investigated, but there are few studies regarding the possible harmful effects of CGRP in other body organs. Objective This study aimed to investigate the effect of intracerebroventricular (ICV) injection of CGRP on sex hormones and sperm quality in rats. Methods Twelve male rats were divided into two groups (n=6 per group). The first group (control) rats were injected with 5 µl artificial cerebrospinal fluid intra-ICV; the second group rats, 5 µl (1.5 nmol) CGRP. The levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone were measured. Epididymal sperms were used to determine the sperm parameters. Results The levels of testosterone, LH and FSH in CGRP group was significantly lower than in artificial cerebrospinal fluid (ACSF) group (P<0.05). The concentration and motility of sperm in CGRP group was significantly lower than in ACSF group (P<0.05). In CGRP group live spermatozoa and intact acrosome significantly reduced compared to the ACSF group (P<0.05). In addition, in CGRP group dead spermatozoa and lose acrosome significantly increased compared to the ACSF group (P<0.05). Conclusion ICV injection of CGRP may reduce sperm quality, probably through induction of an imbalance in FSH and LH production as well as testosterone.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz
| | | | | | - Saeed Nazifi
- Clinical Science, School of Veterinary Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Kadirvelu J, Jacobs SE, Liu R, Charles AJ, Yin J, Mabb AM. The E3 ubiquitin ligase RNF216 contains a linear ubiquitin chain-determining-like domain that functions to regulate dendritic arborization and dendritic spine type in hippocampal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563080. [PMID: 37905043 PMCID: PMC10614953 DOI: 10.1101/2023.10.19.563080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Of the hundreds of E3 ligases found in the human genome, the RING-between RING (RBR) E3 ligase in the LUBAC (linear ubiquitin chain assembly complex) complex HOIP (HOIL-1-interacting protein or RNF31), contains a unique domain called LDD (linear ubiquitin chain determining domain). HOIP is the only E3 ligase known to form linear ubiquitin chains, which regulate inflammatory responses and cell death via activation of the NF-κB pathway. We identified an amino acid sequence within the RNF216 E3 ligase that shares homology to the LDD domain found in HOIP (R2-C). Here, we show that the R2-C domain of RNF216 promotes self-assembly of all ubiquitin chains, with a dominance for those assembled via K63-linkages. Deletion of the R2-C domain altered RNF216 localization, reduced dendritic complexity and changed the distribution of apical dendritic spine morphology types in primary hippocampal neurons. These changes were independent of the RNF216 RBR catalytic activity as expression of a catalytic inactive version of RNF216 had no effect. These data show that the R2-C domain of RNF216 diverges in ubiquitin assembly function from the LDD of HOIP and and functions independently of RNF216 catalytic activity to regulate dendrite development in neurons.
Collapse
Affiliation(s)
- Jayashree Kadirvelu
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, 30303, United States
| | - Savannah E. Jacobs
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, United States
| | - Ruochuan Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, United States
| | - Antoinette J. Charles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, 30303, United States
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, United States
| | - Angela M. Mabb
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, United States
| |
Collapse
|
6
|
Yang H, Zhu Y, Li X, Jiang Z, Dai W. RNF216 affects the stability of STAU2 in the hypothalamus. Dev Growth Differ 2023; 65:408-417. [PMID: 37439148 DOI: 10.1111/dgd.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disease characterized by gonadal failure due to deficiency in gonadotropin-releasing hormone (GnRH) synthesis, secretion, or action. RNF216 variants have been recently identified in patients with IHH. Ring finger protein 216 (RNF216), as a ubiquitin E3 ligase, catalyzes the ubiquitination of target proteins with high specificity, which consequently modulates the stability, localization, and interaction of the target protein. In this study, we found that RNF216 interacted with Staufen2 (STAU2) and affected the stability of STAU2 through the ubiquitin-proteasome pathway. STAU2, as a double-stranded RNA-binding protein enriched in the nervous system, plays a role in RNA transport, RNA stability, translation, anchoring, and synaptic plasticity. Further, we revealed that STAU2 levels in the hypothalamus of RNF216-/- mice were increased compared with wild-type (WT) mice. The change in STAU2 protein homeostasis may affect a series of RNA cargoes. Therefore, we analyzed the changes in RNA levels in the hypothalamus of RNF216-/- mice and WT mice by RNA sequencing. We found that deletion of RNF216 led to decreased activities of the prolactin signaling pathway, neuroactive ligand-receptor interaction, GnRH signaling pathway, and ovarian steroidogenesis. The weakening of these signal pathways is likely to affect the secretion of GnRH, thereby affecting the development of gonads. Therefore, our study suggests that STAU2 may be a potential therapeutic target for IHH. Further experiments are needed to demonstrate the association between the weakening of these signaling pathways and the RNA-binding protein STAU2.
Collapse
Affiliation(s)
- Han Yang
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
- School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yong Zhu
- Blood Transfusion Department, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Xin Li
- School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Zuiming Jiang
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Wenting Dai
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| |
Collapse
|