1
|
Erven JAM, Mattiangeli V, Dreshaj M, Mullin VE, Rossi C, Daly KG, Jackson I, Parker Pearson M, Bradley DG, Frantz LAF, Madsen O, Raemaekers D, Çakirlar C. Archaeogenomic insights into commensalism and regional variation in pig management in Neolithic northwest Europe. Proc Natl Acad Sci U S A 2025; 122:e2410235122. [PMID: 40096601 PMCID: PMC11962444 DOI: 10.1073/pnas.2410235122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
The relationship between humans and pigs has changed dramatically since their domestication in southwest Asia and subsequent human-induced introduction into Europe. Introgression between incoming southwest Asian pigs and European boar resulted in the gradual replacement of southwest Asian ancestry in European pigs. However, we currently lack genomic data required to explore the regional trajectories, nature, and extent of contact between European boar and pigs that led to this turnover, and how this process was facilitated by human activity. We addressed this deficit by sequencing four Mesolithic boar and seven Neolithic pig samples from six archaeological sites in the Netherlands and Britain ranging from the Mesolithic (5500 BCE) to Neolithic (2500 BCE). Our data show that despite continuous gene flow with European boar, Neolithic European pigs show varying levels of southwest Asian ancestry. The low and varying southwest Asian ancestry in pigs from the Early Neolithic Dutch settlement Swifterbant indicates a high contribution of wild ancestry. The genetic profile, enriched δ15N values, on-site presence, and wide size distribution of Swifterbant Sus scrofa suggest a commensal relationship. Runs of homozygosity (ROH) imply that both closed-breeding and free-ranging management occurred in Neolithic communities, where the former showed an extreme burden of long segments of ROH. We further show selection signatures, associated with coat color and behavior, in Neolithic herds despite recurrent wild gene flow. Altogether, our results show distinct husbandry practices through space and time in Neolithic Europe, with heavy reliance on boar recruitment via the commensal pathway in northwest Europe.
Collapse
Affiliation(s)
- Jolijn A. M. Erven
- Groningen Institute of Archaeology, University of Groningen, Groningen9712 ER, Netherlands
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Valeria Mattiangeli
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Merita Dreshaj
- Groningen Institute of Archaeology, University of Groningen, Groningen9712 ER, Netherlands
| | - Victoria E. Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Conor Rossi
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Kevin G. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
- School of Agriculture and Food Science, University College Dublin, DublinD04 C1P1, Ireland
| | - Iseult Jackson
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Mike Parker Pearson
- Institute of Archaeology, University College London, LondonWC1H 0PY, United Kingdom
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Laurent A. F. Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität of Munich, Munich80539, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen6700 AH, Netherlands
| | - Daan Raemaekers
- Groningen Institute of Archaeology, University of Groningen, Groningen9712 ER, Netherlands
| | - Canan Çakirlar
- Groningen Institute of Archaeology, University of Groningen, Groningen9712 ER, Netherlands
| |
Collapse
|
2
|
Tian Y, Qiao H, Odamah K, Zhu LQ, Man HY. Role of androgen receptors in sexually dimorphic phenotypes in UBE3A-dependent autism spectrum disorder. iScience 2025; 28:111868. [PMID: 39991542 PMCID: PMC11847089 DOI: 10.1016/j.isci.2025.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/04/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Autism spectrum disorders (ASDs) involve social, communication, and behavioral challenges. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sexually dimorphic changes at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social communication, long-term memory, and pain sensitivity compared to females. UBE3A-mediated degradation reduced androgen receptor (AR) levels in both sexes but only male mice showed significant dysregulation in the expression of AR target genes. Importantly, restoring AR levels in the brain normalized levels of AR target genes, and rescued the deficits in social preference, grooming, and memory in male UBE3A-overexpressing mice, without affecting females. These findings reveal the critical role of AR signaling in sex-specific changes linked to UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
3
|
Tian Y, Qiao H, Zhu LQ, Man HY. Sexually dimorphic phenotypes and the role of androgen receptors in UBE3A-dependent autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592248. [PMID: 38746146 PMCID: PMC11092617 DOI: 10.1101/2024.05.02.592248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
4
|
Zhang M, Li X, Zhuo S, Yang M, Yu Z. Enriched Environment Enhances Sociability Through the Promotion of ESyt1-Related Synaptic Formation in the Medial Prefrontal Cortex. Mol Neurobiol 2024; 61:3019-3030. [PMID: 37964089 DOI: 10.1007/s12035-023-03742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Sociability stands as a crucial factor in the evolutionary success of all mammalian species. Notably, enriched environment (EE) housing has been shown to enhance sociability in mice. However, the precise underlying molecular mechanism remains elusive. In this study, we established an EE paradigm, housing mice for a 14-day period. Both enhanced sociability and an increased spine density in the medial prefrontal cortex (mPFC) of mice subjected to EE were detected. To elucidate the potential molecular pathway, we conducted high-performance liquid chromatography tandem mass spectrometry (HPLC-MS) analysis of the entire mPFC from both EE and home-caged (HC) housed mice. Our analysis identified 16 upregulated and 20 downregulated proteins in the EE group. Among them, Extended Synaptotagmin 1 (ESyt1), an activity-dependent endoplasmic reticulum (ER)-plasma membrane (PM) tethering protein associated with synaptic function and growth, emerged as a potentially key player in the increased synapse formation and enhanced sociability observed in EE-housed mice. Further investigation, involving the knockdown of ESyt1 expression via sh ESyt1 lentivirus in the mPFC, revealed that ESyt1 is crucial for increased spine density of mPFC and enhanced sociability of mice in an enriched environment but not in normal condition. Overall, our findings uncover a novel mechanistic insight into the positive influence of environmental enrichment on social behavior via ESyt1-mediated pathways.
Collapse
Affiliation(s)
- Meiying Zhang
- Translational Medicine Immunology Laboratory, Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Xianghe Li
- Queen Mary School of Nanchang University, Nanchang, 330031, Jiangxi Province, China
| | - Shitu Zhuo
- Translational Medicine Immunology Laboratory, Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Meili Yang
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| | - Zheng Yu
- Translational Medicine Immunology Laboratory, Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
5
|
Tian Y, Yu F, Yun E, Lin JW, Man HY. mRNA nuclear retention reduces AMPAR expression and promotes autistic behavior in UBE3A-overexpressing mice. EMBO Rep 2024; 25:1282-1309. [PMID: 38316900 PMCID: PMC10933332 DOI: 10.1038/s44319-024-00073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
UBE3A is a common genetic factor in ASD etiology, and transgenic mice overexpressing UBE3A exhibit typical autistic-like behaviors. Because AMPA receptors (AMPARs) mediate most of the excitatory synaptic transmission in the brain, and synaptic dysregulation is considered one of the primary cellular mechanisms in ASD pathology, we investigate here the involvement of AMPARs in UBE3A-dependent ASD. We show that expression of the AMPAR GluA1 subunit is decreased in UBE3A-overexpressing mice, and that AMPAR-mediated neuronal activity is reduced. GluA1 mRNA is trapped in the nucleus of UBE3A-overexpressing neurons, suppressing GluA1 protein synthesis. Also, SARNP, an mRNA nuclear export protein, is downregulated in UBE3A-overexpressing neurons, causing GluA1 mRNA nuclear retention. Restoring SARNP levels not only rescues GluA1 mRNA localization and protein expression, but also normalizes neuronal activity and autistic behaviors in mice overexpressing UBE3A. These findings indicate that SARNP plays a crucial role in the cellular and behavioral phenotypes of UBE3A-induced ASD by regulating nuclear mRNA trafficking and protein translation of a key AMPAR subunit.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Feiyuan Yu
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Eunice Yun
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Bui DT, Ton ANV, Nguyen CTD, Nguyen SH, Tran HK, Nguyen XT, Nguyen HT, Pham GLT, Tran DS, Harrington J, Pham HN, Pham TNV, Cao TA. Pathogenic/likely pathogenic mutations identified in Vietnamese children diagnosed with autism spectrum disorder using high-resolution SNP genotyping platform. Sci Rep 2024; 14:2360. [PMID: 38287090 PMCID: PMC10825208 DOI: 10.1038/s41598-024-52777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Among the most prevalent neurodevelopmental disorders, Autism Spectrum Disorder (ASD) is highly diverse showing a broad phenotypic spectrum. ASD also couples with a broad range of mutations, both de novo and inherited. In this study, we used a proprietary SNP genotyping chip to analyze the genomic DNA of 250 Vietnamese children diagnosed with ASD. Our Single Nucleotide Polymorphism (SNP) genotyping chip directly targets more than 800 thousand SNPs in the genome. Our primary focus was to identify pathogenic/likely pathogenic mutations that are potentially linked to more severe symptoms of autism. We identified and validated 23 pathogenic/likely pathogenic mutations in this initial study. The data shows that these mutations were detected in several cases spanning multiple biological pathways. Among the confirmed SNPs, mutations were identified in genes previously known to be strongly associated with ASD such as SLCO1B1, ACADSB, TCF4, HCP5, MOCOS, SRD5A2, MCCC2, DCC, and PRKN while several other mutations are known to associate with autistic traits or other neurodevelopmental disorders. Some mutations were found in multiple patients and some patients carried multiple pathogenic/likely pathogenic mutations. These findings contribute to the identification of potential targets for therapeutic solutions in what is considered a genetically heterogeneous neurodevelopmental disorder.
Collapse
Affiliation(s)
- Duyen T Bui
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam.
- Gene Friend Way Inc, San Francisco, USA.
| | - Anh N V Ton
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
- Hue University of Medicine and Pharmacy, Thua Thien Hue, Vietnam
| | - Chi T D Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Son H Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Hao K Tran
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Xuan T Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Hang T Nguyen
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Giang L T Pham
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Dong S Tran
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Jillian Harrington
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Hiep N Pham
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Tuyen N V Pham
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Tuan A Cao
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| |
Collapse
|
7
|
Chen C, Zhu B, Tang X, Chen B, Liu M, Gao N, Li S, Gu J. Genome-Wide Assessment of Runs of Homozygosity by Whole-Genome Sequencing in Diverse Horse Breeds Worldwide. Genes (Basel) 2023; 14:1211. [PMID: 37372391 DOI: 10.3390/genes14061211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
In the genomes of diploid organisms, runs of homozygosity (ROH), consecutive segments of homozygosity, are extended. ROH can be applied to evaluate the inbreeding situation of individuals without pedigree data and to detect selective signatures via ROH islands. We sequenced and analyzed data derived from the whole-genome sequencing of 97 horses, investigated the distribution of genome-wide ROH patterns, and calculated ROH-based inbreeding coefficients for 16 representative horse varieties from around the world. Our findings indicated that both ancient and recent inbreeding occurrences had varying degrees of impact on various horse breeds. However, recent inbreeding events were uncommon, particularly among indigenous horse breeds. Consequently, the ROH-based genomic inbreeding coefficient could aid in monitoring the level of inbreeding. Using the Thoroughbred population as a case study, we discovered 24 ROH islands containing 72 candidate genes associated with artificial selection traits. We found that the candidate genes in Thoroughbreds were involved in neurotransmission (CHRNA6, PRKN, and GRM1), muscle development (ADAMTS15 and QKI), positive regulation of heart rate and heart contraction (HEY2 and TRDN), regulation of insulin secretion (CACNA1S, KCNMB2, and KCNMB3), and spermatogenesis (JAM3, PACRG, and SPATA6L). Our findings provide insight into horse breed characteristics and future breeding strategies.
Collapse
Affiliation(s)
- Chujie Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bo Zhu
- Novogene Bioinformatics Institute, Beijing 100015, China
| | - Xiangwei Tang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mei Liu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ning Gao
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Li
- Maxun Biotechnology Institute, Changsha 410024, China
| | - Jingjing Gu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Jankauskas SS, Mone P, Avvisato R, Varzideh F, De Gennaro S, Salemme L, Macina G, Kansakar U, Cioppa A, Frullone S, Gambardella J, Di Mauro M, Tesorio T, Santulli G. miR-181c targets Parkin and SMAD7 in human cardiac fibroblasts: Validation of differential microRNA expression in patients with diabetes and heart failure with preserved ejection fraction. Mech Ageing Dev 2023; 212:111818. [PMID: 37116731 DOI: 10.1016/j.mad.2023.111818] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Cardiac fibrosis represents a key feature in the pathophysiology of heart failure with preserved ejection fraction (HFpEF), a condition highly prevalent amongst geriatric patients, especially if diabetic. The microRNA miR-181c has been shown to be associated with the response to exercise training in HFpEF patients and has been also linked to diabetic cardiovascular complications. However, the underlying mechanisms have not been fully elucidated. OBJECTIVE To measure circulating miR-181c in elderly patients with HFpEF and DM and identify gene targets pathophysiologically relevant in HFpEF. METHODS We quantified circulating miR-181c in frail older adults with a confirmed diagnosis of HFpEF and diabetes, and, as control, we enrolled age-matched subjects without HFpEF and without diabetes. We validated in human cardiac fibroblasts the molecular mechanisms linking miR-181c to a pro-fibrotic response. RESULTS 51 frail patients were included (34 patients with diabetes and HFpEF and 17 age-matched controls. We observed that miR-181c was significantly upregulated (p<0.0001) in HFpEF patients vs controls. We confirmed in vitro that miR-181c is targeting PRKN and SMAD7. CONCLUSIONS We demonstrate that miR-181c levels are significantly increased in frail elderly adults with diabetes and HFpEF and that miR-181c targets PRKN and SMAD7 in human cardiac fibroblasts.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; ASL Avellino, Avellino, 83100, Italy
| | - Roberta Avvisato
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Luigi Salemme
- Casa di Cura "Montevergine", Mercogliano (Avellino), 83013, Italy
| | | | - Urna Kansakar
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angelo Cioppa
- Casa di Cura "Montevergine", Mercogliano (Avellino), 83013, Italy
| | | | - Jessica Gambardella
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Tullio Tesorio
- Casa di Cura "Montevergine", Mercogliano (Avellino), 83013, Italy
| | - Gaetano Santulli
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|