1
|
Yang X, Huang YWA, Marshall J. Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res 2025; 20:715-724. [PMID: 38886937 PMCID: PMC11433911 DOI: 10.4103/nrr.nrr-d-23-02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Tropomyosin receptor kinase B (TrkB) signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory. The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre- or postsynaptic TrkB resulting in the strengthening of synapses, reflected by long-term potentiation. Postsynaptically, the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca2+/calmodulin-dependent protein kinase II and phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation. In this review, we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders. A reduction of TrkB signaling has been observed in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression. Treatment with brain-derived neurotrophic factor is problematic, due to poor pharmacokinetics, low brain penetration, and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform. Although TrkB agonists and antibodies that activate TrkB are being intensively investigated, they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions. Targeting TrkB-postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Vera-Juárez G, Vázquez-Martínez ER, Gómez-Pliego R, López-Martínez M, Espinosa-Raya J. Maternal Resveratrol Supplementation Attenuates Prenatal Stress Impacts on Anxiety- and Depressive-like Behaviors by Regulating Bdnf Transcripts Expression in the Brains of Adult Male Offspring Rats. Brain Sci 2025; 15:210. [PMID: 40002544 PMCID: PMC11853727 DOI: 10.3390/brainsci15020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Prenatal stress has been reported to harm the physiological and biochemical functions of the brain of the offspring, potentially resulting in anxiety- and depression-like behaviors later in life. Trans-Resveratrol (RESV) is known for its anti-inflammatory, anxiolytic, and antidepressant properties. However, whether administering RESV during pregnancy can counteract the anxiety- and depression-like behaviors induced by maternal stress is unknown. OBJECTIVE This study aimed to assess the protective potential of RESV against molecular and behavioral changes induced by prenatal stress. METHODS During pregnancy, the dams received 50 mg/kg BW/day of RESV orally. They underwent a movement restriction for forty-five minutes, three times a day, in addition to being exposed to artificial light 24 h before delivery. The male offspring were left undisturbed until early adulthood, at which point they underwent behavioral assessments, including the open field test, elevated plus maze, and forced swim test. Subsequently, they were euthanized, and the hippocampus and prefrontal cortex were extracted for RT-qPCR analysis to measure Bdnf mRNA expression. RESULTS By weaning, results showed that prenatal stress led to reduced weight gain and, in adulthood, increased anxiety- and depression-like behaviors and changes in Bdnf mRNA expression. However, these effects were attenuated by maternal RESV supplementation. CONCLUSIONS The findings suggest that RESV can prevent anxiety- and depression-like behaviors induced by prenatal stress by modulating Bdnf mRNA expression.
Collapse
Affiliation(s)
- Gerardo Vera-Juárez
- Laboratorio Multidisciplinario en Ciencias Biomédicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City 11000, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Raquel Gómez-Pliego
- Sección de Ciencias de la Salud Humana, Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico;
| | - Margarita López-Martínez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City 11000, Mexico
| | - Judith Espinosa-Raya
- Laboratorio Multidisciplinario en Ciencias Biomédicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| |
Collapse
|
3
|
Numakawa T, Kajihara R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules 2025; 30:848. [PMID: 40005159 PMCID: PMC11857940 DOI: 10.3390/molecules30040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Among neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4/5), BDNF has been extensively studied for its physiological role in cell survival and synaptic regulation in the central nervous system's (CNS's) neurons. BDNF binds to TrkB (a tyrosine kinase) with high affinity, and the resulting downstream intracellular signaling cascades play crucial roles in determining cell fate, including neuronal differentiation and maturation of the CNS neurons. It has been well demonstrated that the downregulation/dysregulation of the BDNF/TrkB system is implicated in the pathogenesis of neurologic and psychiatric disorders, such as Alzheimer's disease (AD) and depression. Interestingly, the effects of BDNF mimetic compounds including flavonoids, small molecules which can activate TrkB-mediated signaling, have been extensively investigated as potential therapeutic strategies for brain diseases, given that p75NTR, a common neurotrophin receptor, also contributes to cell death under a variety of pathological conditions such as neurodegeneration. Since the downregulation of the BDNF/TrkB system is associated with the pathophysiology of neurodegenerative diseases and psychiatric disorders, understanding how alterations in the BDNF/TrkB system contribute to disease progression could provide valuable insight for the prevention of these brain diseases. The present review shows recent advances in the molecular mechanisms underlying the BDNF/TrkB system in neuronal survival and plasticity, providing critical insights into the potential therapeutic impact of BDNF mimetics in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Hematology and Immunology, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
4
|
Wei Y, Wang Z, Xue K, Niu X, Ma L, Han S, Wen B, Zhang Y, Chen H, Cheng J. Key regions aberrantly connected within cerebello-thalamo-cortical circuit and their genetic mechanism in schizophrenia: an fMRI meta-analysis and transcriptome study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:8. [PMID: 39837842 PMCID: PMC11751454 DOI: 10.1038/s41537-025-00558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Recent studies have showed aberrant connectivity of cerebello-thalamo-cortical circuit (CTCC) in schizophrenia (SCZ), which might be a heritable trait. However, these individual studies vary greatly in their methods and findings, and important areas within CTCC and related genetic mechanism are unclear. We searched for consistent regions of circuit dysfunction using a functional magnetic resonance imaging (fMRI) meta-analysis, followed by meta-regression and functional annotation analysis. Gene annotation analysis was performed to identify genes over-expressed in these regions by using the Allen Human Brain Atlas, followed by a set of gene functional feature analyses. 19 studies (1333 patients and 1174 healthy controls) were included in this meta-analysis. SCZ was characterized by hyperconnectivity of the auditory network, visual system, and sensorimotor areas, and hypoconnectivity of the frontal gyrus, cerebellum, thalamus, and caudate nucleus, which were significantly linked to age, sex, duration of illness, and the severity of symptoms and functionally enriched in domains involving self, sensory, action, and social. 2922 genes were significantly over-expressed in these regions, which were enriched for important molecular functions, biological processes, and cellular components of the neurons/cells in the brain as well as SCZ and other mental diseases. These genes were specially expressed in the brain tissue, in the neurons of the cerebellum, subcortex and cortex and during nearly all developmental stages, and constructed a protein-protein interaction network supported by 85 hub genes with functional significance. These findings suggest key regions aberrantly connected within CTCC in SCZ, which may indicate the neural substrate of "cognitive dysmetria" and be a consequence of complex interactions from a wide range of genes with diverse functional features.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ziyu Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Longyao Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huafu Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Li S, Fu Y, Wang W, Qiu J, Huang Y, Li X, Yang K, Yu X, Ma Y, Zhang Y, Zhang M, Li J, Li WD. Olanzapine Induces Adipogenesis and Glucose Uptake by Activating Glycolysis and Synergizing with the PI3K-AKT Pathway. Curr Neuropharmacol 2025; 23:412-425. [PMID: 39150031 DOI: 10.2174/1570159x22666240815120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Administration of olanzapine (OLA) is closely associated with obesity and glycolipid abnormalities in patients with schizophrenia (SCZ), although the exact molecular mechanisms remain elusive. OBJECTIVE We conducted comprehensive animal and molecular experiments to elucidate the mechanisms underlying OLA-induced weight gain. METHODS We investigated the mechanisms of OLA-induced adipogenesis and lipid storage by employing a real-time ATP production rate assay, glucose uptake test, and reactive oxygen species (ROS) detection in 3T3-L1 cells and AMSCs. Rodent models were treated with OLA using various intervention durations, dietary patterns (normal diets/western diets), and drug doses. We assessed body weight, epididymal and liver fat levels, and metabolic markers in both male and female mice. RESULTS OLA accelerates adipogenesis by directly activating glycolysis and its downstream PI3K signaling pathway in differentiated adipocytes. OLA promotes glucose uptake in differentiated 3T3-L1 preadipocytes. In mouse models with normal glycolipid metabolism, OLA administration failed to increase food intake and weight gain despite elevated GAPDH expression, a marker related to glycolysis and PI3K-AKT. This supports the notion that glycolysis plays a significant role in OLA-induced metabolic dysfunction. CONCLUSION OLA induces glycolysis and activates the downstream PI3K-AKT signaling pathway, thereby promoting adipogenesis.
Collapse
Affiliation(s)
- Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Yun Fu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Wanyao Wang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jiali Qiu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yepei Huang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xuemin Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ke Yang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiawen Yu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanyan Ma
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Miaomiao Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Wei-Dong Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
6
|
Mazaheri M, Radahmadi M, Sharifi MR. Effects of chronic empathic stress on synaptic efficacy, as well as short-term and long-term plasticity at the Schaffer collateral/commissural- CA1 synapses in the dorsal hippocampus of rats. Metab Brain Dis 2024; 40:54. [PMID: 39636524 DOI: 10.1007/s11011-024-01487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Empathy, the ability to comprehend and share others' emotional states, impacts brain functions. This in vivo electrophysiological study explored the influence of chronic empathic stress on synaptic efficacy, as well as short-term and long-term plasticity at the Schaffer collateral/Commissural - CA1 synapses in the dorsal hippocampus of rats, in situations of social equality and inequality. Forty-eight male rats were randomized into six groups: control, pseudo-observer, pseudo-demonstrator, observer, demonstrator, and co-demonstrator (Co, Pse-Ob, Pse-De, Ob, De, Co-De) groups. Stress induction (2h/day, 21 days) was performed in situations of equality and inequality. Serum corticosterone levels, slope, amplitude, and area under the curve (AUC) of field excitatory postsynaptic potentials (fEPSPs) were assessed in the hippocampal CA1 area using input-output (I/O) functions, paired-pulse (PP) responses with different interpulse intervals (IPIs), and long-term potentiation (LTP) after high-frequency stimulation (HFS). The fEPSP slope, amplitude, and AUC significantly decreased in all stress groups, especially in the De and Pse-De groups. These parameters were significantly increased in the Co-De and Ob groups compared to the De group. Notably, the corticosterone levels strongly confirmed the electrophysiological findings. Chronic empathic stress could disrupt synaptic efficacy and plasticity in the CA1 area. Empathic stress, involving the presence of cagemates in situations of social equality and inequality, can modify long-term plasticity and serum corticosterone levels in demonstrators and co-demonstrators. Under empathic stress related to situations of inequality, freely moving observers may influence the demonstrators' stress experience. Therefore, the presence of a conspecific in the social inequality conditions had significant suppressive effects on long-term plasticity, while conversely, under equality conditions, long-term plasticity was favorably improved through social buffering.
Collapse
Affiliation(s)
- Mohammad Mazaheri
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Li D, Pan Q, Xiao Y, Hu K. Advances in the study of phencyclidine-induced schizophrenia-like animal models and the underlying neural mechanisms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:65. [PMID: 39039065 PMCID: PMC11263595 DOI: 10.1038/s41537-024-00485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Schizophrenia (SZ) is a chronic, severe mental disorder with heterogeneous clinical manifestations and unknown etiology. Research on SZ has long been limited by the low reliability of and ambiguous pathogenesis in schizophrenia animal models. Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, rapidly induces both positive and negative symptoms of SZ as well as stable SZ-related cognitive impairment in rodents. However, the neural mechanism underlying PCP-induced SZ-like symptoms is not fully understood. Nondopaminergic pathophysiology, particularly excessive glutamate release induced by NMDAR hypofunction in the prefrontal cortex (PFC), may play a key role in the development of PCP-induced SZ-like symptoms. In this review, we summarize studies on the behavioral and metabolic effects of PCP and the cellular and circuitary targets of PCP in the PFC and hippocampus (HIP). PCP is thought to target the ventral HIP-PFC pathway more strongly than the PFC-VTA pathway and thalamocortical pathway. Systemic PCP administration might preferentially inhibit gamma-aminobutyric acid (GABA) neurons in the vHIP and in turn lead to hippocampal pyramidal cell disinhibition. Excitatory inputs from the HIP may trigger sustained, excessive and pathological PFC pyramidal neuron activation to mediate various SZ-like symptoms. In addition, astrocyte and microglial activation and oxidative stress in the cerebral cortex or hippocampus have been observed in PCP-induced models of SZ. These findings perfect the hypoglutamatergic hypothesis of schizophrenia. However, whether these effects direct the consequences of PCP administration and how about the relationships between these changes induced by PCP remain further elucidation through rigorous, causal and direct experimental evidence.
Collapse
Affiliation(s)
- Dabing Li
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China.
| | - Qiangwen Pan
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Yewei Xiao
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Kehui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing, 629000, China.
| |
Collapse
|
8
|
Penadés R, Almodóvar-Payá C, García-Rizo C, Ruíz V, Catalán R, Valero S, Wykes T, Fatjó-Vilas M, Arias B. Changes in BDNF methylation patterns after cognitive remediation therapy in schizophrenia: A randomized and controlled trial. J Psychiatr Res 2024; 173:166-174. [PMID: 38537483 DOI: 10.1016/j.jpsychires.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Although cognitive remediation therapy (CRT) produces cognitive benefits in schizophrenia, we do not yet understand whether molecular changes are associated with this cognitive improvement. A gene central to synaptic plasticity, the BDNF, has been proposed as one potential route. This study assesses whether BDNF methylation changes following CRT-produced cognitive improvement are detected. A randomized and controlled trial was performed with two groups (CRT, n = 40; TAU: Treatment as Usual, n = 20) on a sample of participants with schizophrenia. CRT was delivered by trained therapists using a web-based computerized program. Mixed Models, where the interaction of treatment (CRT, TAU) by time (T0: 0 weeks, T1: 16 weeks) was the main effect were used. Then, we tested the association between the treatment and methylation changes in three CpG islands of the BDNF gene. CRT group showed significant improvements in some cognitive domains. Between-groups differential changes in 5 CpG units over time were found, 4 in island 1 (CpG1.2, CpG1.7, CpG1.10, CpG1.17) and 1 in island 3 (CpG3.2). CRT group showed increases in methylation in CpG1.2, CpG1.7 and decreases in pG1.10, CpG1.17, and CpG3.2. Differences in the degree of methylation were associated with changes in Speed of Processing, Working Memory, and Verbal Learning within the CRT group. Those findings provide new data on the relationship between cognitive improvement and changes in peripheral methylation levels of BDNF gene, a key factor involved in neuroplasticity regulation. Trial Registration: NCT04278027.
Collapse
Affiliation(s)
- Rafael Penadés
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain; Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Carmen Almodóvar-Payá
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Clemente García-Rizo
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain; Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Victoria Ruíz
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain
| | - Rosa Catalán
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain; Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Sergi Valero
- ACE Alzheimer Center Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Til Wykes
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London & Maudsley NHS Foundation Trust, London Hospital, London, United Kingdom
| | - Mar Fatjó-Vilas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Bárbara Arias
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
9
|
Tsimpolis A, Kalafatakis K, Charalampopoulos I. Recent advances in the crosstalk between the brain-derived neurotrophic factor and glucocorticoids. Front Endocrinol (Lausanne) 2024; 15:1362573. [PMID: 38645426 PMCID: PMC11027069 DOI: 10.3389/fendo.2024.1362573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key neurotrophin within the brain, by selectively activating the TrkB receptor, exerts multimodal effects on neurodevelopment, synaptic plasticity, cellular integrity and neural network dynamics. In parallel, glucocorticoids (GCs), vital steroid hormones, which are secreted by adrenal glands and rapidly diffused across the mammalian body (including the brain), activate two different groups of intracellular receptors, the mineralocorticoid and the glucocorticoid receptors, modulating a wide range of genomic, epigenomic and postgenomic events, also expressed in the neural tissue and implicated in neurodevelopment, synaptic plasticity, cellular homeostasis, cognitive and emotional processing. Recent research evidences indicate that these two major regulatory systems interact at various levels: they share common intracellular downstream pathways, GCs differentially regulate BDNF expression, under certain conditions BDNF antagonises the GC-induced effects on long-term potentiation, neuritic outgrowth and cellular death, while GCs regulate the intraneuronal transportation and the lysosomal degradation of BDNF. Currently, the BDNF-GC crosstalk features have been mainly studied in neurons, although initial findings show that this crosstalk could be equally important for other brain cell types, such as astrocytes. Elucidating the precise neurobiological significance of BDNF-GC interactions in a tempospatial manner, is crucial for understanding the subtleties of brain function and dysfunction, with implications for neurodegenerative and neuroinflammatory diseases, mood disorders and cognitive enhancement strategies.
Collapse
Affiliation(s)
- Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantinos Kalafatakis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Faculty of Medicine and Dentistry (Malta Campus), Queen Mary University of London, Victoria, Malta
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
10
|
Lu C, Li S, Kang L, Li Q, Chen H, Lin Y, Zhang H, Tang Z, Bai M, Xiong P. Aripiprazole combined with nerve growth factor improves cognitive function in mice with schizophrenia model. Neurosci Lett 2023; 812:137410. [PMID: 37495071 DOI: 10.1016/j.neulet.2023.137410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The pathogenesis and treatment of cognitive dysfunction in patients with schizophrenia (SCZ) remains a challenge. Exploring new effective treatment strategies is relevant for the improvement of cognitive function. Aripiprazole (ARI) is an atypical antipsychotic that improves some cognitive functions. Nerve growth factor (NGF) has been shown to improve cognitive function in certain neurological impairments and partial neurological deficits, but its mechanism of action in cognitive dysfunction in SCZ is unclear. In this study, we established schizophrenia mouse model with dizocilpine (MK-801); treated mice with ARI alone or in combination with NGF; assessed spontaneous activity and cognitive function using open field test and Morris water maze test; and measured brain-derived neurotrophic factor (BDNF) protein and mRNA expression levels using immunohistochemistry and molecular biology assays. The results showed that ARI alone or in combination with NGF can improve increased spontaneous activity and spatial learning memory deficits in model mice by elevating BDNF expression levels in prefrontal cortex (PFC) and hippocampus (HIP). The results suggest that ARI combined with NGF can improve cognitive function in SCZ, which provides new ideas and directions for the clinical treatment of cognitive dysfunction in SCZ.
Collapse
Affiliation(s)
- Cailian Lu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shan Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Kang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qianqian Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongxu Chen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanwen Lin
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Han Zhang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ziling Tang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Meiyan Bai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peng Xiong
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China; Yunnan Clinical Research Center for Mental Health, Kunming, Yunnan, China.
| |
Collapse
|
11
|
You H, Lu B. Diverse Functions of Multiple Bdnf Transcripts Driven by Distinct Bdnf Promoters. Biomolecules 2023; 13:655. [PMID: 37189402 PMCID: PMC10135494 DOI: 10.3390/biom13040655] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gene encoding brain-derived neurotrophic factor (Bdnf) consists of nine non-coding exons driven by unique promoters, leading to the expression of nine Bdnf transcripts that play different roles in various brain regions and physiological stages. In this manuscript, we present a comprehensive overview of the molecular regulation and structural characteristics of the multiple Bdnf promoters, along with a summary of the current knowledge on the cellular and physiological functions of the distinct Bdnf transcripts produced by these promoters. Specifically, we summarized the role of Bdnf transcripts in psychiatric disorders, including schizophrenia and anxiety, as well as the cognitive functions associated with specific Bdnf promoters. Moreover, we examine the involvement of different Bdnf promoters in various aspects of metabolism. Finally, we propose future research directions that will enhance our understanding of the complex functions of Bdnf and its diverse promoters.
Collapse
Affiliation(s)
- He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China;
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China;
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
12
|
Yoshida S, Hamada Y, Narita M, Sato D, Tanaka K, Mori T, Tezuka H, Suda Y, Tamura H, Aoki K, Kuzumaki N, Narita M. Elucidation of the mechanisms underlying tumor aggravation by the activation of stress-related neurons in the paraventricular nucleus of the hypothalamus. Mol Brain 2023; 16:18. [PMID: 36732798 PMCID: PMC9896675 DOI: 10.1186/s13041-023-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
A growing body of evidence suggests that excess stress could aggravate tumor progression. The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the adaptation to stress because the hypothalamic-pituitary-adrenal (HPA) axis can be activated by inducing the release of corticotropin-releasing hormone (CRH) from the PVN. In this study, we used pharmacogenetic techniques to investigate whether concomitant activation of CRHPVN neurons could directly contribute to tumor progression. Tumor growth was significantly promoted by repeated activation of CRHPVN neurons, which was followed by an increase in the plasma levels of corticosterone. Consistent with these results, chronic administration of glucocorticoids induced tumor progression. Under the concomitant activation of CRHPVN neurons, the number of cytotoxic CD8+ T cells in the tumor microenvironment was dramatically decreased, and the mRNA expression levels of hypoxia inducible factor 1 subunit α (HIF1α), glucocorticoid receptor (GR) and Tsc22d3 were upregulated in inhibitory lymphocytes, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Furthermore, the mRNA levels of various kinds of driver molecules related to tumor progression and tumor metastasis were prominently elevated in cancer cells by concomitant activation of CRHPVN neurons. These findings suggest that repeated activation of the PVN-CRHergic system may aggravate tumor growth through a central-peripheral-associated tumor immune system.
Collapse
Affiliation(s)
- Sara Yoshida
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Yusuke Hamada
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Michiko Narita
- grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Daisuke Sato
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kenichi Tanaka
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tomohisa Mori
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan
| | - Hiroyuki Tezuka
- grid.256115.40000 0004 1761 798XDepartment of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi 470-1192 Japan
| | - Yukari Suda
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hideki Tamura
- grid.412239.f0000 0004 1770 141XInstitute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.412239.f0000 0004 1770 141XLaboratory of Biofunctional Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan
| | - Kazunori Aoki
- grid.272242.30000 0001 2168 5385Department of Immune Medicine, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
13
|
Zhang T, Li S, Mei F, You H, Chen Y, Yang F, Lu B. A protocol for establishing a male G×E schizophrenia mouse model. STAR Protoc 2022; 3:101856. [PMID: 36595927 PMCID: PMC9676628 DOI: 10.1016/j.xpro.2022.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
Abstract
Schizophrenia pathogenesis involves both genetic and environmental factors (G×E). Here, we present a protocol to prepare a schizophrenia rodent model with a specific G×E pair. We describe the breeding of Bdnf-e6-/- mice with genetic deficiency in promoter-VI-driven BDNF expression. We then detail the procedure to expose the mice to postnatal environmental stress including hypoxia, social isolation, and corticosterone. This model better represents the etiology of schizophrenia and thus may facilitate basic research and drug development for schizophrenia. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Room B303, Beijing 100084, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Room B303, Beijing 100084, China
| | - Fan Mei
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Room B303, Beijing 100084, China
| | - Yanghui Chen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Room B303, Beijing 100084, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Room B303, Beijing 100084, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China,Corresponding author
| |
Collapse
|