1
|
Giovannetti A, Lazzari S, Mangoni M, Traversa A, Mazza T, Parisi C, Caputo V. Exploring non-coding genetic variability in ACE2: Functional annotation and in vitro validation of regulatory variants. Gene 2024; 915:148422. [PMID: 38570058 DOI: 10.1016/j.gene.2024.148422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
The surge in human whole-genome sequencing data has facilitated the study of non-coding region variations, yet understanding their biological significance remains a challenge. We used a computational workflow to assess the regulatory potential of non-coding variants, with a particular focus on the Angiotensin Converting Enzyme 2 (ACE2) gene. This gene is crucial in physiological processes and serves as the entry point for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 19 (COVID-19). In our analysis, using data from the gnomAD population database and functional annotation, we identified 17 significant Single Nucleotide Variants (SNVs) in ACE2, particularly in its enhancers, promoters, and 3' untranslated regions (UTRs). We found preliminary evidence supporting the regulatory impact of some of these variants on ACE2 expression. Our detailed examination of two SNVs, rs147718775 and rs140394675, in the ACE2 promoter revealed that these co-occurring SNVs, when mutated, significantly enhance promoter activity, suggesting a possible increase in specific ACE2 isoform expression. This method proves effective in identifying and interpreting impactful non-coding variants, aiding in further studies and enhancing understanding of molecular bases of monogenic and complex traits.
Collapse
Affiliation(s)
- Agnese Giovannetti
- Clinical Genomics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Sara Lazzari
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| | - Manuel Mangoni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Alice Traversa
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi "Link Campus University", Via del Casale di San Pio V 44, 00165 Roma, Italy.
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Chiara Parisi
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo (RM), Italy.
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| |
Collapse
|
2
|
Kim HY, Jeong KM, Kim SH, Choi YJ, Kang HG, Jung H, Min K, Kim HM, Jeong HJ. Modulating effect of Eunkyo-san on expression of inflammatory cytokines and angiotensin-converting enzyme 2 in human mast cells. In Vitro Cell Dev Biol Anim 2024; 60:195-208. [PMID: 38228999 DOI: 10.1007/s11626-024-00847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
Eunkyo-san is widely used in the treatment of severe respiratory infections. Mast cells not only serve as host cells for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but also they also exacerbate Coronavirus disease in 2019 (COVID-19) by causing a cytokine storm. Here we investigated whether Eunkyo-san and its active compound naringenin regulate the expression of inflammatory cytokines and factors connected to viral infection in activated human mast cell line, HMC-1 cells. Eunkyo-san and naringenin significantly reduced levels of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, thymic stromal lymphopoietin, and tumor necrosis factor-α without impacting cytotoxicity. Eunkyo-san and naringenin reduced levels of factors connected to SARS-CoV-2 infection such as angiotensin-converting enzyme 2 (ACE2, SARS-CoV-2 receptor), transmembrane protease/serine subfamily member 2, and tryptase in activated HMC-1 cells. Treatment with Eunkyo-san and naringenin considerably reduced expression levels of ACE2 transcription factor, AP-1 (C-JUN and C-FOS) by blocking phosphatidylinositide-3-kinase and c-Jun NH2-terminal kinases signaling pathways. In addition, Eunkyo-san and naringenin effectively suppressed activation of signal transducer and activator of transcription 3, nuclear translocation of nuclear factor-κB, and activation of caspase-1 in activated HMC-1 cells. Furthermore, Eunkyo-san and naringenin reduced expression of ACE2 mRNA in two activated mast cell lines, RBL-2H3 and IC-2 cells. The overall study findings showed that Eunkyo-san diminished the expression levels of inflammatory cytokines and ACE2, and these findings imply that Eunkyo-san is able to effectively mitigating the cytokine storm brought on by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, 31499, Republic of Korea
| | - Kyung-Min Jeong
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, 31499, Republic of Korea
| | - Seung-Hwan Kim
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, 31499, Republic of Korea
| | - Yu-Jin Choi
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, 31499, Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan, 31499, Republic of Korea
| | - Hanchul Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyunghwon Min
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, 31499, Republic of Korea.
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, 31499, Republic of Korea.
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan, 31499, Republic of Korea.
| |
Collapse
|
3
|
Martinez-Diz S, Morales-Álvarez CM, Garcia-Iglesias Y, Guerrero-González JM, Romero-Cachinero C, González-Cabezuelo JM, Fernandez-Rosado FJ, Arenas-Rodríguez V, Lopez-Cintas R, Alvarez-Cubero MJ, Martinez-Gonzalez LJ. Analyzing the role of ACE2, AR, MX1 and TMPRSS2 genetic markers for COVID-19 severity. Hum Genomics 2023; 17:50. [PMID: 37287057 DOI: 10.1186/s40246-023-00496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND The use of molecular biomarkers for COVID-19 remains unconclusive. The application of a molecular biomarker in combination with clinical ones that could help classifying aggressive patients in first steps of the disease could help clinician and sanitary system a better management of the disease. Here we characterize the role of ACE2, AR, MX1, ERG, ETV5 and TMPRSS2 for trying a better classification of COVID-19 through knowledge of the disease mechanisms. METHODS A total of 329 blood samples were genotyped in ACE2, MX1 and TMPRSS2. RNA analyses were also performed from 258 available samples using quantitative polymerase chain reaction for genes: ERG, ETV5, AR, MX1, ACE2, and TMPRSS2. Moreover, in silico analysis variant effect predictor, ClinVar, IPA, DAVID, GTEx, STRING and miRDB database was also performed. Clinical and demographic data were recruited from all participants following WHO classification criteria. RESULTS We confirm the use of ferritin (p < 0.001), D-dimer (p < 0.010), CRP (p < 0.001) and LDH (p < 0.001) as markers for distinguishing mild and severe cohorts. Expression studies showed that MX1 and AR are significantly higher expressed in mild vs severe patients (p < 0.05). ACE2 and TMPRSS2 are involved in the same molecular process of membrane fusion (p = 4.4 × 10-3), acting as proteases (p = 0.047). CONCLUSIONS In addition to the key role of TMPSRSS2, we reported for the first time that higher expression levels of AR are related with a decreased risk of severe COVID-19 disease in females. Moreover, functional analysis demonstrates that ACE2, MX1 and TMPRSS2 are relevant markers in this disease.
Collapse
Affiliation(s)
- Silvia Martinez-Diz
- Preventive Medicine and Public Health Service, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Carmen Maria Morales-Álvarez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Parque Tecnológico de La Salud, Av. de La Investigación, 11, 18016, Granada, Spain
| | | | - Juan Miguel Guerrero-González
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Parque Tecnológico de La Salud, Av. de La Investigación, 11, 18016, Granada, Spain
| | | | | | | | - Verónica Arenas-Rodríguez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Parque Tecnológico de La Salud, Av. de La Investigación, 11, 18016, Granada, Spain
| | | | - Maria Jesús Alvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain.
- Department of Biochemistry, Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Parque Tecnológico de La Salud, Av. de La Investigación, 11, 18016, Granada, Spain.
- Biosanitary Research Institute (Ibs. GRANADA), University of Granada, Granada, Spain.
| | - Luis Javier Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| |
Collapse
|
4
|
Breugelmans T, Arras W, Oosterlinck B, Jauregui-Amezaga A, Somers M, Cuypers B, Laukens K, De Man JG, De Schepper HU, De Winter BY, Smet A. IL-22-Activated MUC13 Impacts on Colonic Barrier Function through JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK Signaling. Cells 2023; 12:1224. [PMID: 37174625 PMCID: PMC10177587 DOI: 10.3390/cells12091224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Overexpression of the transmembrane mucin MUC13, as seen in inflammatory bowel diseases (IBD), could potentially impact barrier function. This study aimed to explore how inflammation-induced MUC13 disrupts epithelial barrier integrity by affecting junctional protein expression in IBD, thereby also considering the involvement of MUC1. RNA sequencing and permeability assays were performed using LS513 cells transfected with MUC1 and MUC13 siRNA and subsequently stimulated with IL-22. In vivo intestinal permeability and MUC13-related signaling pathways affecting barrier function were investigated in acute and chronic DSS-induced colitis wildtype and Muc13-/- mice. Finally, the expression of MUC13, its regulators and other barrier mediators were studied in IBD and control patients. Mucin knockdown in intestinal epithelial cells affected gene expression of several barrier mediators in the presence/absence of inflammation. IL-22-induced MUC13 expression impacted barrier function by modulating the JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK signaling pathways, with a cooperating role for MUC1. In response to DSS, MUC13 was protective during the acute phase whereas it caused more harm upon chronic colitis. The pathways accounting for the MUC13-mediated barrier dysfunction were also altered upon inflammation in IBD patients. These novel findings indicate an active role for aberrant MUC13 signaling inducing intestinal barrier dysfunction upon inflammation with MUC1 as collaborating partner.
Collapse
Affiliation(s)
- Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Wout Arras
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Baptiste Oosterlinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Aranzazu Jauregui-Amezaga
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Michaël Somers
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Bart Cuypers
- Department of Computer Science, Adrem Data Lab, University of Antwerp, 2610 Antwerp, Belgium
| | - Kris Laukens
- Department of Computer Science, Adrem Data Lab, University of Antwerp, 2610 Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Heiko U. De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
5
|
Kim HY, Kang HG, Kim HM, Jeong HJ. Expression of SARS-CoV-2 receptor angiotensin-converting enzyme 2 by activating protein-1 in human mast cells. Cell Immunol 2023; 386:104705. [PMID: 36898276 PMCID: PMC9985914 DOI: 10.1016/j.cellimm.2023.104705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection activates mast cells and induces a cytokine storm, leading to severe Coronavirus disease in 2019 (COVID-19). SARS-CoV-2 employs angiotensin-converting enzyme 2 (ACE2) for cell entry. In the present study, the expression of ACE2 and its mechanism in activated mast cells were studied utilizing the human mast cell line, HMC-1 cells and it was elucidated whether dexamethasone used as a treatment for COVID-19 could regulate ACE2 expression. Here we documented for the first time that levels of ACE2 were increased by stimulation of phorbol 12-myristate 13-acetate and A23187 (PMACI) in HMC-1 cells. Increased levels of ACE2 were significantly diminished by treatment with Wortmannin, SP600125, SB203580, PD98059, or SR11302. The expression of ACE2 was most significantly reduced by the activating protein (AP)-1 inhibitor SR11302. PMACI stimulation enhanced the expression of the transcription factor AP-1 for ACE2. In addition, levels of transmembrane protease/serine subfamily member 2 (TMPRSS2) and tryptase were increased in PMACI-stimulated HMC-1 cells. However, dexamethasone significantly lowered levels of ACE2, TMPRSS2, and tryptase generated by PMACI. Treatment with dexamethasone also reduced activation of signaling molecules linked to ACE2 expression. According to these findings, levels of ACE2 were up-regulated through activation of AP-1 in mast cells, suggesting that suppressing ACE2 levels in mast cells would be a therapeutic approach to lessen the harm caused by COVID-19.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan 31499, Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan 31499, Republic of Korea; Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea.
| |
Collapse
|