1
|
Chaudhary P, Singha B, Abdel-Hafiz HA, Velegraki M, Sundi D, Satturwar S, Parwani AV, Grivennikov SI, You S, Goodridge HS, Ma Q, Chang Y, Ma A, Zheng B, Theodorescu D, Li Z, Li X. Sex differences in bladder cancer: understanding biological and clinical implications. Biol Sex Differ 2025; 16:31. [PMID: 40361239 PMCID: PMC12070554 DOI: 10.1186/s13293-025-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Bladder cancer (BC) remains a significant global health concern, with substantial sex and racial disparities in incidence, progression, and outcomes. BC is the sixth most common cancer among males and the seventeenth most common among females worldwide. Over 90% of BC cases are urothelial carcinoma (UC) with high degrees of pathological heterogeneity. Molecular subtyping of BC has also revealed distinct luminal, basal, and neuroendocrine subtypes, each with unique genetic and immune signatures. Emerging research uncovers the biasing effects of the sex hormones with androgens increasing BC risk through both tumor cell intrinsic and extrinsic mechanisms. The sex chromosomes, including both the X and Y chromosomes, also contribute to the sex differences in BC. The effect of sex chromosome is both independent from and synergistic with the effects of sex hormones. Loss of the Y chromosome is frequently observed in BC patients, while an extra copy of the X chromosome confers better protection against BC in females than in males. Advent of advanced technologies such as multiomics and artificial intelligence will likely further improve the understanding of sex differences in BC, which may ultimately lead to personalized preventative and treatment strategies depending on the biological sex of patients. This review delves into the impacts of biology of sex on BC, emphasizing the importance of further research into sex-specific biology to improve cancer prevention and care.
Collapse
Affiliation(s)
- Prakash Chaudhary
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Biplab Singha
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hany A Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno‑Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University, Comprehensive Cancer Center Board of Governors, Columbus, OH, USA
| | - Swati Satturwar
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yuzhou Chang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Bin Zheng
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno‑Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Xue Li
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Ramirez A, Sriram V, Abbouchi Y, Patolia R, Passaro E, Kaluzienski M, Maisel K. Inflammation modulates lymph node biomechanics in a sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639945. [PMID: 40060646 PMCID: PMC11888317 DOI: 10.1101/2025.02.24.639945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Lymph nodes are highly specialized immune organs that orchestrate the adaptive immune response. In the lymph nodes, naïve B and T lymphocytes encounter cognate antigens, sparking their activation and response to foreign substances. Lymph nodes grow in response to an immune challenge, at least in part to accommodate increased numbers of infiltrating and proliferating B and T lymphocytes. This behavior is supported by a robust three-dimensional network of extracellular matrix (ECM) fibers and fibroblastic reticular cells (FRCs). ECM fibers and FRCs work synergistically to alternate stretching and contractile forces between them allowing the lymph node to maintain structural integrity during rapid tissue reconstruction. These changes ultimately alter the material properties of the lymph node, which can impact cell migration, proliferation, and differentiation. Recent work has investigated the physiological implications of the changing lymph node microenvironment; however, the biophysical properties of the lymph nodes during these changes remain largely unexplored. Here, we use multiple particle tracking microrheology (MPT), a minimally invasive nanoparticle-based technique to investigate the biophysical properties (elastic/loss moduli, microviscosity, pore size) of lymph nodes post inflammatory stimulus. Our results highlight mechanical changes both during the initial phases of the acute inflammatory response and upon resolution of inflammation, a topic that is relatively understudied. We show that B and T cell rich areas restructure independently, with T cell zones remodeling significantly and exhibiting nearly a 3-fold higher elastic modulus. Additionally, for the first time, we show that biological sex modulates lymph node biomechanics in acute inflammation: Lymph nodes from female mice showed a ~20-fold increase in elastic and loss moduli at peak inflammation, while lymph nodes from male mice had a ~5-fold decrease in both moduli. Additionally, lymph nodes from female mice appeared to permanently remodel during the resolution of acute inflammation resulting in the maintenance of an overall higher elastic and loss modulus, while lymph nodes from male mice returned to the biomechanics of untreated lymph nodes. We also found that at least some of the changes in biomechanical properties were correlated with changes in ECM materials in the lymph nodes, suggesting a structure-function relationship. Overall, our studies provide key insights into how biomechanical properties in lymph nodes are altered during inflammation, a previously unstudied area, and lay the foundation for structure-function relationships involved in immune response. Additionally, we demonstrate a robust technique for the analysis of the lymph node interstitial tissue properties and how they vary with inflammatory stimuli.
Collapse
Affiliation(s)
- Ann Ramirez
- Fischell Department of Bioengineering, University of Maryland, College Park
| | - Vedanth Sriram
- Fischell Department of Bioengineering, University of Maryland, College Park
- Biophysics Program, University of Maryland, College Park
| | - Yassmin Abbouchi
- Fischell Department of Bioengineering, University of Maryland, College Park
| | - Reina Patolia
- Fischell Department of Bioengineering, University of Maryland, College Park
| | - Emily Passaro
- Fischell Department of Bioengineering, University of Maryland, College Park
| | | | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park
- Biophysics Program, University of Maryland, College Park
| |
Collapse
|
3
|
Braun J. Fast, Present and Future of the Concept of Spondyloarthritis. Curr Rheumatol Rep 2025; 27:15. [PMID: 39869233 DOI: 10.1007/s11926-024-01179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/28/2025]
Abstract
PURPOSE OF REVIEW Axial spondyloarthritis (axSpA) is a rather prevalent chronic inflammatory rheumatic disease that affects already relatively young patients. It has been known better since the end of the nineteenth century but quite a lot has been learned since the early 60ies when the first classification (diagnostic) criteria for ankylosing spondylitis (AS) were agreed on. I have been part of many developments in the last 30 years, and I'm happy to have been able to contribute to the scientific progress in terms of diagnosis, imaging, pathophysiology and therapy. When I was asked to write a manuscript about the SpA concept I felt honored. Thus, the purpose of this extensive review was, on the one hand, to describe the history of AS and axSpA, and on the other hand, to reason about the concept and the gestalt of axSpA, and finally to deliver some ideas what future researchers could possibly do to further study the disease. RECENT FINDINGS The last 3 decades were full of innovations for both, classification and treatment of axSpA which also helped us to learn about the pathophysiology. Thus, TNFa, IL-17, IL-23 and Janus kinase are established targets to reduce inflammation. IL-17 and IL-23 are very special in that regard because they both work for psoriasis but only anti-IL-17 agents which don't work in IBD are approved for axSpA, while IL 23 inhibitors are approved for both, psoriasis and IBD, but they don't work in axSpA. New imaging techniques such as low dose CT and synthetic MRI are likely to improve the detection of both active and structural lesions of axSpA. This manuscript tries to describe the most important findings about axSpA. The main aim of research remains to discover the pathophysiology and to further improve treatment options in order to reduce and abolish inflammation and prevent new bone formation to increase the quality of life of our patients. The differences between male and female disease and the role of the immune system in axSpA are now the main challenges, and the role of special T-cell receptors seem to deserve special interest.
Collapse
Affiliation(s)
- J Braun
- Rheumatologisches Versorgungszentrum Steglitz, Ruhr Universität Bochum, Schloßstr.110, 12163, Berlin, Germany.
| |
Collapse
|
4
|
Cerrato C, Crocerossa F, Marchioni M, Giannarini G, Gupta S, Albiges L, Brouwer O, Albersen M, Fankhauser C, Grimm MO, Gandaglia G, Roupret M, Mir MC. Effect of Sex on the Oncological Outcomes in Response to Immunotherapy and Antibody-drug Conjugates in Patients with Urothelial and Kidney Cancer: A Systematic Review and a Network Meta-analysis. Eur Urol Oncol 2024; 7:1005-1014. [PMID: 38644155 DOI: 10.1016/j.euo.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Immune checkpoint inhibitors (ICIs) and antibody-drug conjugates (ADCs) herald a transformative era in metastatic renal cell carcinoma (RCC) and transitional cell carcinoma (TCC) treatment, amid acknowledged sex-based disparities in these cancers. We conducted a systematic review and network meta-analysis (NMA) to identify sex-specific differences in the efficacy of ICI/ADC monotherapy or combination therapies for RCC and TCC survival, in metastatic and adjuvant settings. METHODS A systematic search was conducted up to October 2023 for English articles on ICIs and ADCs as systemic therapies (ICIs in first-line and adjuvant treatment for RCC, ICIs and ADCs in first- and second-line treatment for TCC). Randomised clinical trials were considered. The primary objective was overall survival (OS) of ICIs and ADCs between males and females. The secondary outcomes included progression-free survival, overall response rate, disease-free survival, and recurrence-free survival. Treatment efficacy was evaluated by sex via odds ratios (ORs) and confidence intervals compared with controls. Log ORs were used for creating a frequentist NMA. This meta-analysis was registered on PROSPERO (CRD42023468632). KEY FINDINGS AND LIMITATIONS Eighteen articles met the inclusion criteria. Females had an advantage for RCC-adjuvant treatment for atezolizumab (log OR [SE] = -0.57 ± 0.25, p = 0.024) in OS. Males showed a survival advantage in TCC second-line treatment for ADC-Nectin 4 (log OR [SE] = 0.65 ± 0.28, p = 0.02). No other significant results were shown. CONCLUSIONS AND CLINICAL IMPLICATIONS The NMA revealed gender-specific variations in ICI and ADC responses for RCC and TCC, offering insights for personalised cancer care and addressing disparities in cancer care and outcomes. PATIENT SUMMARY In this systematic review, we looked at the sex differences for metastatic renal cell carcinoma (RCC) and transitional cell carcinoma (TCC) for antibody-drug conjugates and immune checkpoint inhibitors. In our analysis, female and male sex has better overall survival for adjuvant and second-line therapies for RCC and TCC, respectively. Urgent research on gender-specific cancer therapies is imperative.
Collapse
Affiliation(s)
- Clara Cerrato
- University Hospital Southampton NHS Trust, Southampton, UK
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Gianluca Giannarini
- Urology Unit, "Santa Maria della Misericordia" University Hospital, Udine, Italy
| | - Shilpa Gupta
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Laurence Albiges
- Department of Cancer Medicine, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Oscar Brouwer
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Christian Fankhauser
- Department of Urology, Luzerner Kantonsspital, Luzern, Switzerland; University of Lucerne, Lucerne, Switzerland; University of Zurich, Zurich, Switzerland
| | | | - Giorgio Gandaglia
- Department of Urology, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Morgan Roupret
- GRC 5 Predictive Onco-Uro, Department of Urology, AP-HP, Pitié Salpétrière Hospital, Sorbonne University, Paris, France
| | - Maria Carmen Mir
- Department of Urology, Hospital Universitario La Ribera, Valencia, Spain.
| |
Collapse
|
5
|
Layug PJ, Vats H, Kannan K, Arsenio J. Sex differences in CD8 + T cell responses during adaptive immunity. WIREs Mech Dis 2024; 16:e1645. [PMID: 38581141 DOI: 10.1002/wsbm.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Biological sex is an important variable that influences the immune system's susceptibility to infectious and non-infectious diseases and their outcomes. Sex dimorphic features in innate and adaptive immune cells and their activities may help to explain sex differences in immune responses. T lymphocytes in the adaptive immune system are essential to providing protection against infectious and chronic inflammatory diseases. In this review, T cell responses are discussed with focus on the current knowledge of biological sex differences in CD8+ T cell mediated adaptive immune responses in infectious and chronic inflammatory diseases. Future directions aimed at investigating the molecular and cellular mechanisms underlying sex differences in diverse T cell responses will continue to underscore the significance of understanding sex differences in protective immunity at the cellular level, to induce appropriate T cell-based immune responses in infection, autoimmunity, and cancer. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Paul Jerard Layug
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
| | - Harman Vats
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kamali Kannan
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Janilyn Arsenio
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Naciri I, Andrade-Ludena MD, Yang Y, Kong M, Sun S. An emerging link between lncRNAs and cancer sex dimorphism. Hum Genet 2024; 143:831-842. [PMID: 38095719 PMCID: PMC11176266 DOI: 10.1007/s00439-023-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/05/2023] [Indexed: 06/15/2024]
Abstract
The prevalence and progression of cancer differ in males and females, and thus, sexual dimorphism in tumor development directly impacts clinical research and medicine. Long non-coding RNAs (lncRNAs) are increasingly recognized as important players in gene expression and various cellular processes, including cancer development and progression. In recent years, lncRNAs have been implicated in the differences observed in cancer incidence, progression, and treatment responses between men and women. Here, we present a brief overview of the current knowledge regarding the role of lncRNAs in cancer sex dimorphism, focusing on how they affect epigenetic processes in male and female mammalian cells. We discuss the potential mechanisms by which lncRNAs may contribute to sex differences in cancer, including transcriptional control of sex chromosomes, hormonal signaling pathways, and immune responses. We also propose strategies for studying lncRNA functions in cancer sex dimorphism. Furthermore, we emphasize the importance of considering sex as a biological variable in cancer research and the need to investigate the role lncRNAs play in mediating these sex differences. In summary, we highlight the emerging link between lncRNAs and cancer sex dimorphism and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Maria D Andrade-Ludena
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Sutherland L, Carter L. Sex as a Biological Variable in Early-Phase Oncology Clinical Trials: Enhancing the Path to Personalised Medicine. Heliyon 2024; 10:e32597. [PMID: 39183838 PMCID: PMC11341330 DOI: 10.1016/j.heliyon.2024.e32597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Sex is an essential biological variable that influences the development, progression and response to treatment in cancer. Despite this, early-phase cancer clinical trials frequently neglect to consider sex as a variable, creating a barrier to the development of personalised medicine. This article argues that failure to identify and infer sex differences in early-phase clinical trials may result in suboptimal dosing, underestimation of toxicity, and the failure to identify potential sex-specific responses to new systemic anticancer therapies. There should be a greater focus on sex as a biological variable in drug development so that thoughtful and deliberate study design can bring precision to the development of new systemic cancer therapies.
Collapse
Affiliation(s)
- Lydia Sutherland
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
- Department of Pharmacy, The Christie NHS Foundation Trust, Manchester, UK
| | - Louise Carter
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
9
|
Schulz B, Leitner E, Schreiber T, Lindner T, Schwarz R, Aboutara N, Ma Y, Escobar HM, Palme R, Hinz B, Vollmar B, Zechner D. Sex Matters-Insights from Testing Drug Efficacy in an Animal Model of Pancreatic Cancer. Cancers (Basel) 2024; 16:1901. [PMID: 38791980 PMCID: PMC11120498 DOI: 10.3390/cancers16101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Preclinical studies rarely test the efficacy of therapies in both sexes. The field of oncology is no exception in this regard. In a model of syngeneic, orthotopic, metastasized pancreatic ductal adenocarcinoma we evaluated the impact of sex on pathological features of this disease as well as on the efficacy and possible adverse side effects of a novel, small molecule-based therapy inhibiting KRAS:SOS1, MEK1/2 and PI3K signaling in male and female C57BL/6J mice. Male mice had less tumor infiltration of CD8-positive cells, developed bigger tumors, had more lung metastasis and a lower probability of survival compared to female mice. These more severe pathological features in male animals were accompanied by higher distress at the end of the experiment. The evaluated inhibitors BI-3406, trametinib and BKM120 showed synergistic effects in vitro. This combinatorial therapy reduced tumor weight more efficiently in male animals, although the drug concentrations were similar in the tumors of both sexes. These results underline the importance of sex-specific preclinical research and at the same time provide a solid basis for future studies with the tested compounds.
Collapse
Affiliation(s)
- Benjamin Schulz
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| | - Emily Leitner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| | - Tim Schreiber
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Nadine Aboutara
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Yixuan Ma
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Hugo Murua Escobar
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rupert Palme
- Experimental Endocrinology, Department of Biological Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| |
Collapse
|
10
|
Xiao T, Lee J, Gauntner TD, Velegraki M, Lathia JD, Li Z. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat Rev Cancer 2024; 24:338-355. [PMID: 38589557 DOI: 10.1038/s41568-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.
Collapse
Affiliation(s)
- Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Gauntner
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Rose Ella Burkhardt Brain Tumour Center, Cleveland Clinic, Cleveland, OH, USA.
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA.
| |
Collapse
|
11
|
Collazos J, Pérez-Is L, de la Fuente B, Morano L, Rivas-Carmenado M, Rodriguez M, Romero-Favela A, de Jesús Fonseca-González G, Melón S, Diaz-Arias J, Valle-Garay E, Asensi V. No gender differences in the 24-month course of non-invasive liver fibrosis markers after DAA therapy in HCV-mono and HCV/HIV-coinfected patients. Sci Rep 2024; 14:7534. [PMID: 38553507 PMCID: PMC10980728 DOI: 10.1038/s41598-024-57845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Untreated HCV mono and HCV/HIV coinfected women have lower degrees of liver fibrosis (LF) compared to men. Direct acting antiviral (DAA) therapy attains viral eradication in > 90% of patients with progressive LF decline in parallel. Gender-related differences in LF regression in the long term assessed by non-invasive liver fibrosis markers (NILFM) in HCV mono and HCV/HIV coinfected after DAA treatment have not been explored so far. 374 HCV-infected adult patients, 214 of them HCV/HIV coinfected, were followed-up for 24 months after starting DAA therapy. LF was assessed by NILFM: transient elastometry (TE) and several biochemical indexes (APRI, Forns, FIB-4). Men had significantly more advanced LF at baseline than women assessed by NILFM. No LF differences at baseline in age, HIV coinfection course (CD4, HIV viral load), and HCV features (HCV viral load, genotype) were detected. No significant gender differences in LF decline after comparing 24-month and baseline LF values were observed. LF changes after DAA therapy were similar in HCV mono and HCV/HIV coinfected patients and in both sexes. Gender did not influence the course of LF decline after DAA assessed by NILFM: TE (P = 0.8), APRI (P = 0.9), Forns (P = 0.4) and FIB-4 (P = 0.7) by multivariate analysis. No gender differences in the 24 month LF decline after DAA with independence of having HCV mono or HCV/HIV coinfection were found.
Collapse
Affiliation(s)
- Julio Collazos
- Infectious Diseases Unit, Hospital of Galdakao-Usansolo, Galdácano Vizcaya, Spain
| | - Laura Pérez-Is
- Biochemistry and Molecular Biology, University of Oviedo Medical School, Oviedo, Spain
- Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Luis Morano
- Infectious Diseases Unit, Complejo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain
| | - Maria Rivas-Carmenado
- Infectious Diseases-HIV Unit, Hospital Universitario Central de Asturias, University of Oviedo Medical School, Oviedo, Spain
- Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel Rodriguez
- Gastroenterology and Hepatology Service, Hospital Universitario Central de Asturias, University of Oviedo Medical School, Oviedo, Spain
| | | | | | - Santiago Melón
- Virology Division, Hospital Universitario Central de Asturias, University of Oviedo Medical School, Oviedo, Spain
| | - Javier Diaz-Arias
- Biochemistry and Molecular Biology, University of Oviedo Medical School, Oviedo, Spain
- Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Eulalia Valle-Garay
- Biochemistry and Molecular Biology, University of Oviedo Medical School, Oviedo, Spain
- Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Víctor Asensi
- Infectious Diseases-HIV Unit, Hospital Universitario Central de Asturias, University of Oviedo Medical School, Oviedo, Spain.
- Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
- Infectious Diseases-HIV Unit, Hospital Universitario Central de Asturias, Avenida de Roma S/N, 33011, Oviedo, Spain.
| |
Collapse
|
12
|
Toren P, Wilkins A, Patel K, Burley A, Gris T, Kockelbergh R, Lodhi T, Choudhury A, Bryan RT. The sex gap in bladder cancer survival - a missing link in bladder cancer care? Nat Rev Urol 2024; 21:181-192. [PMID: 37604983 DOI: 10.1038/s41585-023-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
The differences in bladder cancer outcomes between the sexes has again been highlighted. Uncommon among cancers, bladder cancer outcomes are notably worse for women than for men. Furthermore, bladder cancer is three to four times more common among men than among women. Factors that might explain these sex differences include understanding the importance of haematuria as a symptom of bladder cancer by both clinicians and patients, the resultant delays in diagnosis and referral of women with haematuria, and health-care access. Notably, these factors seem to have geographical variation and are not consistent across all health-care systems. Likewise, data relating to sex-specific treatment responses for patients with non-muscle-invasive or muscle-invasive bladder cancer are inconsistent. The influence of differences in the microbiome, bladder wall thickness and urine dwell times remain to be elucidated. The interplay of hormone signalling, gene expression, immunology and the tumour microenvironment remains complex but probably underpins the sexual dimorphism in disease incidence and stage and histology at presentation. The contribution of these biological phenomena to sex-specific outcome differences is probable, albeit potentially treatment-specific, and further understanding is required. Notwithstanding these aspects, we identify opportunities to harness biological differences to improve treatment outcomes, as well as areas of fundamental and translational research to pursue. At the level of policy and health-care delivery, improvements can be made across the domains of patient awareness, clinician education, referral pathways and guideline-based care. Together, we aim to highlight opportunities to close the sex gap in bladder cancer outcomes.
Collapse
Affiliation(s)
- Paul Toren
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospitals NHS Trust, London, UK
| | - Keval Patel
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Amy Burley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Typhaine Gris
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Roger Kockelbergh
- University Hospitals of Leicester NHS Trust, Leicester, UK
- Action Bladder Cancer UK, Tetbury, UK
| | - Taha Lodhi
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Richard T Bryan
- Action Bladder Cancer UK, Tetbury, UK.
- Bladder Cancer Research Centre, Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Francis N, Braun M, Neagle S, Peiffer S, Bohn A, Rosenthal A, Olbrich T, Lollies S, Ilsmann K, Hauck C, Gerstmayer B, Weber S, Kirkpatrick A. Development of an automated manufacturing process for large-scale production of autologous T cell therapies. Mol Ther Methods Clin Dev 2023; 31:101114. [PMID: 37790245 PMCID: PMC10544074 DOI: 10.1016/j.omtm.2023.101114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Engineered T cell therapies have shown significant clinical success. However, current manufacturing capabilities present a challenge in bringing these therapies to patients. Furthermore, the cost of development and manufacturing is still extremely high due to complexity of the manufacturing process. Increased automation can improve quality and reproducibility while reducing costs through minimizing hands-on operator time, allowing parallel manufacture of multiple products, and reducing the complexity of technology transfer. In this article, we describe the results of a strategic alliance between GSK and Miltenyi Biotec to develop a closed, automated manufacturing process using the CliniMACS Prodigy for autologous T cell therapy products that can deliver a high number of cells suitable for treating solid tumor indications and compatible with cryopreserved apheresis and drug product. We demonstrate the ability of the T cell Transduction - Large Scale process to deliver a significantly higher cell number than the existing process, achieving 1.5 × 1010 cells after 12 days of expansion, without affecting other product attributes. We demonstrate successful technology transfer of this robust process into three manufacturing facilities.
Collapse
Affiliation(s)
- Natalie Francis
- Cell & Gene Therapy, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Marion Braun
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Sarah Neagle
- Cell & Gene Therapy, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Sabine Peiffer
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Alexander Bohn
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Alexander Rosenthal
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Tanita Olbrich
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Sophia Lollies
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Keijo Ilsmann
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Carola Hauck
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Bernhard Gerstmayer
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Silvio Weber
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Aileen Kirkpatrick
- Cell & Gene Therapy, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
14
|
Rodriguez-Lara V, Soca-Chafre G, Avila-Costa MR, Whaley JJJV, Rodriguez-Cid JR, Ordoñez-Librado JL, Rodriguez-Maldonado E, Heredia-Jara NA. Role of sex and sex hormones in PD-L1 expression in NSCLC: clinical and therapeutic implications. Front Oncol 2023; 13:1210297. [PMID: 37941543 PMCID: PMC10628781 DOI: 10.3389/fonc.2023.1210297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Currently, immunotherapy based on PD-1/PD-L1 pathway blockade has improved survival of non-small cell lung cancer (NSCLC) patients. However, differential responses have been observed by sex, where men appear to respond better than women. Additionally, adverse effects of immunotherapy are mainly observed in women. Studies in some types of hormone-dependent cancer have revealed a role of sex hormones in anti-tumor response, tumor microenvironment and immune evasion. Estrogens mainly promote immune tolerance regulating T-cell function and modifying tumor microenvironment, while androgens attenuate anti-tumor immune responses. The precise mechanism by which sex and sex hormones may modulate immune response to tumor, modify PD-L1 expression in cancer cells and promote immune escape in NSCLC is still unclear, but current data show how sexual differences affect immune therapy response and prognosis. This review provides update information regarding anti-PD-1/PD-L immunotherapeutic efficacy in NSCLC by sex, analyzing potential roles for sex hormones on PD-L1 expression, and discussing a plausible of sex and sex hormones as predictive response factors to immunotherapy.
Collapse
Affiliation(s)
- Vianey Rodriguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Giovanny Soca-Chafre
- Oncological Diseases Research Unit (UIEO), Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Laboratory, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | | | | | | | - Emma Rodriguez-Maldonado
- Traslational Medicine Laboratory, Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | |
Collapse
|
15
|
Morehead LC, Garg S, Wallis KF, Simoes CC, Siegel ER, Tackett AJ, Miousse IR. Increased Response to Immune Checkpoint Inhibitors with Dietary Methionine Restriction in a Colorectal Cancer Model. Cancers (Basel) 2023; 15:4467. [PMID: 37760436 PMCID: PMC10526448 DOI: 10.3390/cancers15184467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Dietary methionine restriction (MR), defined as a reduction of methionine intake by around 80%, has been shown to reproducibly decrease tumor growth and synergize with cancer therapies. In this study, we combined DMR with immune checkpoint inhibitors (ICIs) in a model of colon adenocarcinoma. In vitro, we observed that MR increased the expression of MHC-I and PD-L1 in both mouse and human colorectal cancer cells. We also saw an increase in the gene expression of STING, a known inducer of type I interferon signaling. Inhibition of the cGAS-STING pathway, pharmacologically or with siRNA, blunted the increase in MHC-I and PD-L1 surface and gene expression following MR. This indicated that the cGAS-STING pathway, and interferon in general, played a role in the immune response to MR. We then combined dietary MR with ICIs targeting CTLA-4 and PD-1 in an MC38 colorectal cancer tumor model developed in immunocompetent C57BL/6 mice. The combination treatment was five times more effective at reducing the tumor size than ICIs alone in male mice. We noted sex differences in the response to dietary MR, with males showing a greater response than females. Finally, we observed an increase in membrane staining for the PD-L1 protein in MC38 tumors from animals who were fed an MR diet. MHC-I was highly expressed in all tumors and showed no expression difference when comparing tumors from control and MR-treated mice. These results indicated that MR increased PD-L1 expression both in vitro and in vivo and improved the response to ICIs in mice.
Collapse
Affiliation(s)
- Lauren C. Morehead
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (S.G.); (A.J.T.)
| | - Sarita Garg
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (S.G.); (A.J.T.)
| | - Katherine F. Wallis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (S.G.); (A.J.T.)
| | - Camila C. Simoes
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (S.G.); (A.J.T.)
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (S.G.); (A.J.T.)
| |
Collapse
|
16
|
Chen J, Huang CP, Quan C, Zu X, Ou Z, Tsai YC, Messing E, Yeh S, Chang C. The androgen receptor in bladder cancer. Nat Rev Urol 2023; 20:560-574. [PMID: 37072491 DOI: 10.1038/s41585-023-00761-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
Bladder cancer is the ninth most common cancer worldwide with a striking sex-based difference in incidence. Emerging evidence indicates that the androgen receptor (AR) might promote the development, progression and recurrence of bladder cancer, contributing to the observed sex differences. Targeting androgen-AR signalling has promise as potential therapy for bladder cancer and helps to suppress progression of this disease. In addition, the identification of a new membrane AR and AR-regulated non-coding RNAs has important implications for bladder cancer treatment. The success of human clinical trials of targeted-AR therapies will help in the development of improved treatments for patients with bladder cancer.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Yu-Chieh Tsai
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward Messing
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyuan Yeh
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
17
|
Ornos ED, Cando LF, Catral CD, Quebral EP, Tantengco OA, Arevalo MVP, Dee EC. Molecular basis of sex differences in cancer: Perspective from Asia. iScience 2023; 26:107101. [PMID: 37404373 PMCID: PMC10316661 DOI: 10.1016/j.isci.2023.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
Cancer is a leading cause of mortality and morbidity globally. Sex differences in cancer are evident in death rates and treatment responses in several cancers. Asian patients have unique cancer epidemiology influenced by their genetic ancestry and sociocultural factors in the region. In this review, we show molecular associations that potentially mediate sex disparities observed in cancer in Asian populations. Differences in sex characteristics are evident at the cytogenetic, genetic, and epigenetic levels mediating processes that include cell cycle, oncogenesis, and metastasis. Larger clinical and in vitro studies that explore mechanisms can confirm the associations of these molecular markers. In-depth studies of these markers can reveal their importance as diagnostics, prognostics, and therapeutic efficacy markers. Sex differences should be considered in designing novel cancer therapeutics in this era of precision medicine.
Collapse
Affiliation(s)
- Eric David Ornos
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | - Leslie Faye Cando
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | | | - Elgin Paul Quebral
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
- Virology Laboratory, Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ourlad Alzeus Tantengco
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Department of Biology, College of Science, De La Salle University, Manila 0922, Philippines
| | | | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10028, USA
| |
Collapse
|
18
|
Morehead LC, Garg S, Wallis KF, Siegel ER, Tackett AJ, Miousse IR. Increased response to immune checkpoint inhibitors with dietary methionine restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535695. [PMID: 37066240 PMCID: PMC10104076 DOI: 10.1101/2023.04.05.535695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Dietary methionine restriction, defined as reduction of methionine intake by around 80%, reproducibly decreases tumor growth and synergizes with cancer therapies. Here, we combined dietary methionine restriction with immune checkpoint inhibitors in a model of colon adenocarcinoma. In vitro , we observed that methionine restriction increased the expression of MHC-I and PD-L1 in both mouse and human colorectal cancer cells. We also saw an increase in the gene expression of STING, a known inducer of type I interferon signaling. Inhibition of the cGAS-STING pathway, pharmacologically or with siRNA, blunted the increase in MHC-I and PD-L1 surface and gene expression following methionine restriction. PD-L1 expression was also This indicated that the cGAS-STING pathway in particular, and interferon in general, is playing a role in the immune response to methionine restriction. We then combined dietary methionine restriction with immune checkpoint inhibitors targeted against CTLA-4 and PD-1 in a MC38 colorectal cancer tumor model in C57BL/6 mice. The combination treatment was five times more effective at reducing tumor size than immune checkpoint inhibition alone in males. We noted sex differences in the response to dietary methionine restriction for the MC38 tumor model in C57BL/6 mice. Finally, we observed an increase in PD-L1 protein expression in MC38 tumors from animals who were fed a methionine-restricted diet. Furthermore, the distribution of CD8 staining changed from mostly peripheric in the controls, to intratumoral in the methionine-restricted tumors. MHC-I, which has a high basal expression in MC38 cells, was highly expressed in all tumors. These results indicate that methionine restriction improves the response to immune checkpoint inhibitors in mice, and that this improvement is associated with the cGAS-STING pathway and interferon signaling.
Collapse
Affiliation(s)
- Lauren C. Morehead
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Sarita Garg
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Katherine F. Wallis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|