1
|
Austin TT, Thomas CL, Warren B. Sex differences in auditory function of the desert locust. Hear Res 2025; 460:109228. [PMID: 40056785 DOI: 10.1016/j.heares.2025.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Age-related auditory decline manifests across the animal kingdom, from humans and mice to zebrafish and insects. Sex differences in auditory decline are established for humans, but there is now evidence in mice and even zebrafish. Here, we found sex differences in auditory decline in an insect, the Desert Locust and investigated its biological basis. We profiled gene expression in a dedicated auditory organ, Müller's organ to understand the genetic underpinning of sex differences and measured sound-evoked transduction currents and electrophysiological properties of auditory neurons to quantify auditory decline. We analysed gene expression in Müller's organ of young locusts where sex differences in auditory function were absent and in older, noise-exposed locusts where sex differences in auditory function were maximal. The auditory organs of both male and females changed expression of 1200 and 931 genes, respectively, as they aged and were exposed to repeated bouts of noise exposure. Only 39 genes were differentially expressed between the sexes for young locusts and 9 for aged and noise exposed auditory organs. In young locusts we found sex-differences in genes for juvenile hormone and proteins involved in egg production and catalysis of steroid hormones. The majority of sex differences in Müller's organ manifested as a function of stress with females upregulating more and downregulating less genes compared to males. We hypothesise that sex differences in auditory decline are due to differences in immune responses and metabolic processes.
Collapse
Affiliation(s)
- Tom T Austin
- Neurogenetics Group, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Christian L Thomas
- Neurogenetics Group, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ben Warren
- School of Life Sciences, University of Keele, Newcastle, ST5 5BG, United Kingdom.
| |
Collapse
|
2
|
Pessman BJ, Hebets EA. Web transmission properties vary with a spider's past and current noise exposure. Curr Biol 2025; 35:1706-1715.e4. [PMID: 40088894 DOI: 10.1016/j.cub.2025.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
Animals rely on the reception of accurate information for survival and reproduction. Environmental noise, especially from human activity, challenges information acquisition by disturbing sensory channels and masking relevant cues. Investigations into how animals cope with noise have been heavily biased toward plasticity in information production, often overlooking flexibility in information reception. Studying internal sensory structures is challenging, but web-building spiders offer a unique opportunity to investigate external sensory surfaces-their webs. Here, we explored the potential of the funnel-weaving spider, Agelenopsis pennsylvanica, to influence information reception amid vibratory noise. During web construction, we exposed spiders to a 2 × 2 fully-crossed design: rural/urban collection sites and quiet/loud noise treatments, reflecting natural vibratory noise variation. On the resulting webs, we compared frequency-dependent energy loss between site/treatment groups as vibrations transmitted short and longer distances from an artificial stimulus to the spider's hunting position. Under loud vibratory noise, rural webs retained more energy in longer-distance vibratory stimuli across a narrow frequency range (350-600 Hz) than all other groups, potentially to improve the reception of relevant prey and mate cues. Conversely, urban/loud webs lost more energy in short-distance vibrations across a broader frequency range (300-1,000 Hz) than all other groups, likely to prevent sensory overload from constant, high-amplitude urban noise. Variable web transmission was related to spiders' prior (ancestral and/or developmental) and current noise exposure. Our study highlights the capacity of animals to influence information reception amid environmental noise and emphasizes the importance of a holistic approach to studying information flow in dynamic environments.
Collapse
Affiliation(s)
- Brandi J Pessman
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Robertson RM, Wang Y. Recovery from spreading depolarization is slowed by aging and accelerated by antioxidant treatment in locusts. J Neurophysiol 2025; 133:245-256. [PMID: 39665253 DOI: 10.1152/jn.00487.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Spreading depolarization (SD) temporarily shuts down neural processing in mammals and insects. Age is a critical factor for predicting the consequences of SD in humans. We investigated the effect of aging in an insect model of SD and explored the contribution of oxidative stress. Aging slowed the recovery of intact locusts from asphyxia. We monitored SD by recording the DC potential across the blood-brain barrier in response to bath application of the Na+/K+-ATPase inhibitor, ouabain. Ouabain induced changes to the DC potential that could be separated into two distinct components: a slow, permanent negative shift, like the negative ultraslow potential recorded in mammals and human patients, and rapid, reversible negative DC shifts (SD events). Aging had no effect on the slow shift but increased the duration of SD events. This was accompanied by a decrease in the rate of recovery of DC potential at the end of the SD event. An attempt to generate oxidative stress using rotenone was unsuccessful, but pretreatment with the antioxidant, N-acetylcysteine amide, had opposite effects to those of aging, reducing duration, and increasing rate of recovery, suggesting that it prevented oxidative damage occurring during the ouabain treatment. The antioxidant also reduced the rate of the slow negative shift. We propose that the aging locust nervous system is more vulnerable to stress due to a prior accumulation of oxidative damage. Our findings strengthen the notion that insects provide useful models for the investigation of cellular and molecular mechanisms underlying SD in mammals.NEW & NOTEWORTHY Anoxia and similar energetic crises trigger a shutdown of central neural processing in a process of spreading depolarization (SD) that is generally pathological in mammals and protective in insects. We show that older animals are slower to recover from SD in an insect model. Moreover, preventing oxidative stress with an antioxidant speeds recovery. These findings demonstrate the role of oxidative stress in contributing to the vulnerability of the aging insect central nervous system (CNS) in energetic emergencies.
Collapse
Affiliation(s)
| | - Yuyang Wang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Austin TT, Thomas CL, Warren B. Auditory robustness and resilience in the aging auditory system of the desert locust. Neurobiol Aging 2024; 133:39-50. [PMID: 37913625 DOI: 10.1016/j.neurobiolaging.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
After overexposure to loud music, we experience a decrease in our ability to hear (robustness), which usually recovers (resilience). Here, we exploited the amenable auditory system of the desert locust, Schistocerca gregaria, to measure how robustness and resilience depend on age. We found that gene expression changes are dominated by age as opposed to noise exposure. We measured sound-evoked nerve activity for young and aged locusts directly, after 24 hours and 48 hours after noise exposure. We found that both young and aged locusts recovered their auditory nerve function over 48 hours. We also measured the sound-evoked transduction current in individual auditory neurons, and although the transduction current magnitude recovered in the young locusts after noise exposure, it failed to recover in the aged locusts. A plastic mechanism compensates for the decreased transduction current in aged locusts. We suggest key genes upregulated in young noise-exposed locusts that mediate robustness to noise exposure and find potential candidates responsible for compensatory mechanisms in the auditory neurons of aged noise-exposed locusts.
Collapse
Affiliation(s)
- Thomas T Austin
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Christian L Thomas
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ben Warren
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
5
|
Warren B, Eberl D. What can insects teach us about hearing loss? J Physiol 2024; 602:297-316. [PMID: 38128023 DOI: 10.1113/jp281281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Over the last three decades, insects have been utilized to provide a deep and fundamental understanding of many human diseases and disorders. Here, we present arguments for insects as models to understand general principles underlying hearing loss. Despite ∼600 million years since the last common ancestor of vertebrates and invertebrates, we share an overwhelming degree of genetic homology particularly with respect to auditory organ development and maintenance. Despite the anatomical differences between human and insect auditory organs, both share physiological principles of operation. We explain why these observations are expected and highlight areas in hearing loss research in which insects can provide insight. We start by briefly introducing the evolutionary journey of auditory organs, the reasons for using insect auditory organs for hearing loss research, and the tools and approaches available in insects. Then, the first half of the review focuses on auditory development and auditory disorders with a genetic cause. The second half analyses the physiological and genetic consequences of ageing and short- and long-term changes as a result of noise exposure. We finish with complex age and noise interactions in auditory systems. In this review, we present some of the evidence and arguments to support the use of insects to study mechanisms and potential treatments for hearing loss in humans. Obviously, insects cannot fully substitute for all aspects of human auditory function and loss of function, although there are many important questions that can be addressed in an animal model for which there are important ethical, practical and experimental advantages.
Collapse
Affiliation(s)
- Ben Warren
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester, UK
| | - Daniel Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Austin TT, Woodrow C, Pinchin J, Montealegre-Z F, Warren B. Effects of age and noise on tympanal displacement in the Desert Locust. JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104595. [PMID: 38052320 DOI: 10.1016/j.jinsphys.2023.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
Insect cuticle is an evolutionary-malleable exoskeleton that has specialised for various functions. Insects that detect the pressure component of sound bear specialised sound-capturing tympani evolved from cuticular thinning. Whilst the outer layer of insect cuticle is composed of non-living chitin, its mechanical properties change during development and aging. Here, we measured the displacements of the tympanum of the desert Locust, Schistocerca gregaria, to understand biomechanical changes as a function of age and noise-exposure. We found that the stiffness of the tympanum decreases within 12 h of noise-exposure and increases as a function of age, independent of noise-exposure. Noise-induced changes were dynamic with an increased tympanum displacement to sound within 12 h post noise-exposure. Within 24 h, however, the tone-evoked displacement of the tympanum decreased below that of control Locusts. After 48 h, the tone-evoked displacement of the tympanum was not significantly different to Locusts not exposed to noise. Tympanal displacements reduced predictably with age and repeatably noise-exposed Locusts (every three days) did not differ from their non-noise-exposed counterparts. Changes in the biomechanics of the tympanum may explain an age-dependent decrease in auditory detection in tympanal insects.
Collapse
Affiliation(s)
- Thomas T Austin
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Charlie Woodrow
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln LN6 7DL, UK
| | - James Pinchin
- Faculty of Engineering, University of Nottingham, University Park, Nottinghamshire NG7 2RD, UK
| | - Fernando Montealegre-Z
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln LN6 7DL, UK
| | - Ben Warren
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
7
|
Austin TT, Thomas CL, Lewis C, Blockley A, Warren B. Metabolic decline in an insect ear: correlative or causative for age-related auditory decline? Front Cell Dev Biol 2023; 11:1138392. [PMID: 37274746 PMCID: PMC10233746 DOI: 10.3389/fcell.2023.1138392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
One leading hypothesis for why we lose our hearing as we age is a decrease in ear metabolism. However, direct measurements of metabolism across a lifespan in any auditory system are lacking. Even if metabolism does decrease with age, a question remains: is a metabolic decrease a cause of age-related auditory decline or simply correlative? We use an insect, the desert locust Schistocerca gregaria, as a physiologically versatile model to understand how cellular metabolism correlates with age and impacts on age-related auditory decline. We found that auditory organ metabolism decreases with age as measured fluorometrically. Next, we measured the individual auditory organ's metabolic rate and its sound-evoked nerve activity and found no correlation. We found no age-related change in auditory nerve activity, using hook electrode recordings, and in the electrophysiological properties of auditory neurons, using patch-clamp electrophysiology, but transduction channel activity decreased. To further test for a causative role of the metabolic rate in auditory decline, we manipulated metabolism of the auditory organ through diet and cold-rearing but found no difference in sound-evoked nerve activity. We found that although metabolism correlates with age-related auditory decline, it is not causative. Finally, we performed RNA-Seq on the auditory organs of young and old locusts, and whilst we found enrichment for Gene Ontology terms associated with metabolism, we also found enrichment for a number of additional aging GO terms. We hypothesize that age-related hearing loss is dominated by accumulative damage in multiple cell types and multiple processes which outweighs its metabolic decline.
Collapse
|