1
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
3
|
Vilà-González M, Pinte L, Fradique R, Causa E, Kool H, Rodrat M, Morell CM, Al-Thani M, Porter L, Guo W, Maeshima R, Hart SL, McCaughan F, Granata A, Sheppard DN, Floto RA, Rawlins EL, Cicuta P, Vallier L. In vitro platform to model the function of ionocytes in the human airway epithelium. Respir Res 2024; 25:180. [PMID: 38664797 PMCID: PMC11045446 DOI: 10.1186/s12931-024-02800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.
Collapse
Affiliation(s)
- Marta Vilà-González
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Cell Therapy and Tissue Engineering Group, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma, 07122, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain.
| | - Laetitia Pinte
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ricardo Fradique
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Erika Causa
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Heleen Kool
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Carola Maria Morell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Maha Al-Thani
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Linsey Porter
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Wenrui Guo
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Ruhina Maeshima
- Genetics and Genome Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Stephen L Hart
- Genetics and Genome Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Frank McCaughan
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Foundation Trust, Cambridge, CB2 0AY, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Pietro Cicuta
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité, Augustenburger Platz 1, 13353, Berlin, DE, Germany.
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
5
|
Petit LMG, Belgacemi R, Ancel J, Saber Cherif L, Polette M, Perotin JM, Spassky N, Pilette C, Al Alam D, Deslée G, Dormoy V. Airway ciliated cells in adult lung homeostasis and COPD. Eur Respir Rev 2023; 32:230106. [PMID: 38056888 PMCID: PMC10698550 DOI: 10.1183/16000617.0106-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/07/2023] [Indexed: 12/08/2023] Open
Abstract
Cilia are organelles emanating from the cell surface, consisting of an axoneme of microtubules that extends from a basal body derived from the centrioles. They are either isolated and nonmotile (primary cilia), or grouped and motile (motile cilia). Cilia are at the centre of fundamental sensory processes and are involved in a wide range of human disorders. Pulmonary cilia include motile cilia lining the epithelial cells of the conductive airways to orchestrate mucociliary clearance, and primary cilia found on nondifferentiated epithelial and mesenchymal cells acting as sensors and cell cycle keepers. Whereas cilia are essential along the airways, their regulatory molecular mechanisms remain poorly understood, resulting in a lack of therapeutic strategies targeting their structure or functions. This review summarises the current knowledge on cilia in the context of lung homeostasis and COPD to provide a comprehensive overview of the (patho)biology of cilia in respiratory medicine with a particular emphasis on COPD.
Collapse
Affiliation(s)
- Laure M G Petit
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Randa Belgacemi
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Lynda Saber Cherif
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Charles Pilette
- Université Catholique de Louvain (UCL), Institute of Experimental and Clinical Research - Pole of Pneumology, ENT, Dermatology and Pulmonology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| |
Collapse
|
6
|
Adametz F, Müller A, Stilgenbauer S, Burkhalter MD, Philipp M. Aging Associates with Cilium Elongation and Dysfunction in Kidney and Pancreas. Adv Biol (Weinh) 2023; 7:e2300194. [PMID: 37537358 DOI: 10.1002/adbi.202300194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Indexed: 08/05/2023]
Abstract
Cilia are best known and most studied for their manifold functions enabling proper embryonic development. Loss of cilia or dysfunction thereof results in a great variety of congenital malformations and syndromes. However, there are also cilia-driven conditions, which manifest only later in life, such as polycystic kidney disease. Even degenerative diseases in the central nervous system have recently been linked to alterations in cilia biology. Surprisingly though, there is very little knowledge regarding cilia in normally aged organisms absent any disease. Here, it is provided evidence that cilia in naturally aged mice are considerably elongated in the kidney and pancreas, respectively. Moreover, such altered cilia appear to have become dysfunctional as indicated by changes in cellular signaling.
Collapse
Affiliation(s)
- Fabian Adametz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Annika Müller
- Department of Internal Medicine III, Ulm University, 89081, Ulm, Germany
| | | | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomis, University of Tübingen, 72074, Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomis, University of Tübingen, 72074, Tübingen, Germany
| |
Collapse
|
7
|
Ford MJ, Harwalkar K, Kazemdarvish H, Yamanaka N, Yamanaka Y. CD133/Prom1 marks proximal mouse oviduct epithelial progenitors and adult epithelial cells with a low generative capacity. Biol Open 2023; 12:bio059963. [PMID: 37605939 PMCID: PMC10508696 DOI: 10.1242/bio.059963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
The epithelium lining the oviduct or fallopian tube consists of multiciliated and secretory cells, which support fertilization and preimplantation development, however, its homeostasis remains poorly understood. CD133/Prom1 expression has been used as a marker to identify adult stem cell populations in various organs and often associated with cancer cells that have stem-like properties. Using an antibody targeted to CD133 and a Cre recombinase-based lineage tracing strategy, we found that CD133/Prom1 expression is not associated with a stem/progenitor population in the oviduct but marked predominantly multiciliated cells with a low generative capacity. Additionally, we have shown that CD133 is disparately localised along the oviduct during neonatal development, and that Prom1 expressing secretory cells in the ampulla rapidly transitioned to multiciliated cells and progressively migrated to the ridge of epithelial folds.
Collapse
Affiliation(s)
- Matthew J Ford
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Hengameh Kazemdarvish
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Nobuko Yamanaka
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Institute, Department of Human Genetics, McGill University, Montreal QC H3A 1A3, Canada
| |
Collapse
|