1
|
Pasta A, Formisano E, Calabrese F, Marabotto E, Furnari M, Bodini G, Torres MCP, Pisciotta L, Giannini EG, Zentilin P. From Dysbiosis to Hepatic Inflammation: A Narrative Review on the Diet-Microbiota-Liver Axis in Steatotic Liver Disease. Microorganisms 2025; 13:241. [PMID: 40005608 PMCID: PMC11857840 DOI: 10.3390/microorganisms13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota has emerged as a critical player in metabolic and liver health, with its influence extending to the pathogenesis and progression of steatotic liver diseases. This review delves into the gut-liver axis, a dynamic communication network linking the gut microbiome and liver through metabolic, immunological, and inflammatory pathways. Dysbiosis, characterized by altered microbial composition, contributes significantly to the development of hepatic steatosis, inflammation, and fibrosis via mechanisms such as gut barrier dysfunction, microbial metabolite production, and systemic inflammation. Dietary patterns, including the Mediterranean diet, are highlighted for their role in modulating the gut microbiota, improving gut-liver axis integrity, and attenuating liver injury. Additionally, emerging microbiota-based interventions, such as fecal microbiota transplantation and bacteriophage therapy, show promise as therapeutic strategies for steatotic liver disease. However, challenges such as population heterogeneity, methodological variability, and knowledge gaps hinder the translational application of current findings. Addressing these barriers through standardized approaches and integrative research will pave the way for microbiota-targeted therapies to mitigate the global burden of steatotic liver disease.
Collapse
Affiliation(s)
- Andrea Pasta
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
| | - Elena Formisano
- Dietetics and Clinical Nutrition Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (L.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Calabrese
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Elisa Marabotto
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Manuele Furnari
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giorgia Bodini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Maria Corina Plaz Torres
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Livia Pisciotta
- Dietetics and Clinical Nutrition Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (L.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Edoardo Giovanni Giannini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Zentilin
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
2
|
Bilson J, Oquendo CJ, Read J, Scorletti E, Afolabi PR, Lord J, Bindels LB, Targher G, Mahajan S, Baralle D, Calder PC, Byrne CD, Sethi JK. Markers of adipose tissue fibrogenesis associate with clinically significant liver fibrosis and are unchanged by synbiotic treatment in patients with NAFLD. Metabolism 2024; 151:155759. [PMID: 38101770 DOI: 10.1016/j.metabol.2023.155759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND AIMS Subcutaneous adipose tissue (SAT) dysfunction contributes to NAFLD pathogenesis and may be influenced by the gut microbiota. Whether transcript profiles of SAT are associated with liver fibrosis and are influenced by synbiotic treatment (that changes the gut microbiome) is unknown. We investigated: (a) whether the presence of clinically significant, ≥F2 liver fibrosis associated with adipose tissue (AT) dysfunction, differential gene expression in SAT, and/or a marker of tissue fibrosis (Composite collagen gene expression (CCGE)); and (b) whether synbiotic treatment modified markers of AT dysfunction and the SAT transcriptome. METHODS Sixty-two patients with NAFLD (60 % men) were studied before and after 12 months of treatment with synbiotic or placebo and provided SAT samples. Vibration-controlled transient elastography (VCTE)-validated thresholds were used to assess liver fibrosis. RNA-sequencing and histological analysis of SAT were performed to determine differential gene expression, CCGE and the presence of collagen fibres. Regression modelling and receiver operator characteristic curve analysis were used to test associations with, and risk prediction for, ≥F2 liver fibrosis. RESULTS Patients with ≥F2 liver fibrosis (n = 24) had altered markers of AT dysfunction and a SAT gene expression signature characterised by enrichment of inflammatory and extracellular matrix-associated genes, compared to those with CONCLUSION A differential gene expression signature in SAT associates with ≥F2 liver fibrosis is explained by a measure of systemic insulin resistance and is not changed by synbiotic treatment. SAT CCGE values are a good predictor of ≥F2 liver fibrosis in NAFLD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Carolina J Oquendo
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Read
- School of Chemistry, Faculty of Engineering and Physical sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Division of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul R Afolabi
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UC Louvain, Université Catholique de Louvain, Brussels, Belgium; Welbio department, WEL Research Institute, Wavre, Belgium
| | - Giovanni Targher
- Department of Medicine, University of Verona, Italy; Metabolic Diseases Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Sumeet Mahajan
- School of Chemistry, Faculty of Engineering and Physical sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.
| | - Jaswinder K Sethi
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Su X, Chen S, Liu J, Feng Y, Han E, Hao X, Liao M, Cai J, Zhang S, Niu J, He S, Huang S, Lo K, Zeng F. Composition of gut microbiota and non-alcoholic fatty liver disease: A systematic review and meta-analysis. Obes Rev 2024; 25:e13646. [PMID: 37813400 DOI: 10.1111/obr.13646] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 10/11/2023]
Abstract
The present systematic review and meta-analysis aimed to summarize the associations between gut microbiota composition and non-alcoholic fatty liver disease. To compare the differences between individuals with or without NAFLD, the standardized mean difference and 95% confidence interval were computed for each α-diversity index and relative abundance of gut microbes. The β-diversity indices were summarized in a qualitative manner. A total of 54 studies with 8894 participants were included. Overall, patients with NAFLD had moderate reduction in α-diversity indices including Shannon (SMD = -0.36, 95% CI = [-0.53, -0.19], p < 0.001) and Chao 1 (SMD = -0.42, 95% CI = [-0.68, -0.17], p = 0.001), but no significant differences were found for Simpson, observed species, phylogenetic diversity, richness, abundance-based coverage estimator, and evenness (p ranged from 0.081 to 0.953). Over 75% of the included studies reported significant differences in β-diversity. Although there was substantial interstudy heterogeneity, especially for analyses at the phylum, class, and family levels, the majority of the included studies showed alterations in the depletion of anti-inflammatory microbes (i.e., Ruminococcaceae and Coprococcus) and the enrichment of proinflammatory microbes (i.e., Fusobacterium and Escherichia) in patients with NAFLD. Perturbations in gut microbiota were associated with NAFLD, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species.
Collapse
Affiliation(s)
- Xin Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shiyun Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiazi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yonghui Feng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Eerdun Han
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaolei Hao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Minqi Liao
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, PR, Germany
| | - Jun Cai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shiwen Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianxiang Niu
- General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shihua He
- Department of Infectious Disease, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Shaofen Huang
- Shenzhen Qianhai Shekou Free Zone Hospital, Shenzhen, China
| | - Kenneth Lo
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Feng R, Yang W, Feng W, Huang X, Cen M, Peng G, Wu W, Wang Z, Jing Y, Long T, Liu Y, Li Z, Chang G, Huang K. Time-restricted feeding ameliorates non-alcoholic fatty liver disease through modulating hepatic nicotinamide metabolism via gut microbiota remodeling. Gut Microbes 2024; 16:2390164. [PMID: 39154362 PMCID: PMC11332628 DOI: 10.1080/19490976.2024.2390164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a global health concern, lacking specific therapeutic strategies. Time-restricted feeding (TRF) regimen demonstrated beneficial effects in NAFLD; however, the underlying mechanisms remain unclear. In this study, we established a NAFLD mouse model through a high-fat diet (HFD) and implemented the 16:8 TRF regimen for a duration of 6 weeks. We demonstrated that TRF remarkably alleviated hepatic steatosis in HFD mice. Of note, aldehyde oxidase 1 (AOX1), a key enzyme in hepatic nicotinamide (NAM) catabolism, exhibited apparent upregulation in response to HFD, leading to abnormal accumulation of N-Methyl-6-pyridone-3-carboxamide (N-Me-6-PY, also known as 2PY) and N-Methyl-4-pyridone-5-carboxamide (N-Me-4-PY, also known as 4PY), whereas it was almost restored by TRF. Both N-Me-6-PY and N-Me-4-PY promoted de novo lipogenesis and fatty acid uptake capacities in hepatocyte, and aggravated hepatic steatosis in mice either fed chow diet or HFD. In contrast, pharmacological inhibition of AOX1 was sufficient to ameliorate the hepatic steatosis and lipid metabolic dysregulation induced by HFD. Moreover, transplantation of fecal microbiota efficiently mimicked the modulatory effect of TRF on NAM metabolism, thus mitigating hepatic steatosis and lipid metabolic disturbance, suggesting a gut microbiota-dependent manner. In conclusion, our study reveals the intricate relationship between host NAM metabolic modification and gut microbiota remodeling during the amelioration of NAFLD by TRF, providing promising insights into the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Ruijia Feng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiqi Feng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guiyan Peng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenrui Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhecun Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yexiang Jing
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Long
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Wang X, Jin X, Li H, Zhang X, Chen X, Lu K, Chu C. Effects of various interventions on non-alcoholic fatty liver disease (NAFLD): A systematic review and network meta-analysis. Front Pharmacol 2023; 14:1180016. [PMID: 37063273 PMCID: PMC10090390 DOI: 10.3389/fphar.2023.1180016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background: With the increasing prevalence of obesity and metabolic syndrome, the incidence of non-alcoholic fatty liver disease (NAFLD) is also increasing. In the next decade, NAFLD may become the main cause of liver transplantation. Therefore, the choice of treatment plan is particularly important. The purpose of this study was to compare several interventions in the treatment of NAFLD to provide some reference for clinicians in selecting treatment methods.Methods: We searched Public Medicine (PubMed), Medline, Excerpta Medica Database (Embase), and Cochrane Library from January 2013 to January 2023 to identify randomized controlled trials (RCTs) published in English. The network meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Forty-three studies accounting for a total of 2,969 patients were included, and alanine aminotransferase (ALT), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL) were selected as outcome measures for analysis and comparison.Results: We evaluated the results of drug, diet, and lifestyle interventions between the intervention and control groups. Curcumin (CUN) and probiotics (PTC) were selected for medication, the Mediterranean diet (MDED) was selected for special diet (SPD), and various kinds of exercise and lifestyle advice were selected for lifestyle interventions (LFT). The SUCRA was used to rank interventions according to the effect on ALT indicators (SUCRA: PTC 80.3%, SPD 65.2%, LFT 61.4%, PLB 32.8%, CUN 10.2%), TC indicators (SUCRA: PTC 89.4%, SPD 64%, CUN 34%, LFT 36.6%, PLB 17%), and LDL indicators (SUCRA: PTC 84.2%, CUN 69.5%, LFT 51.7%, PLB 30.1%, SPD 14.5%). The pairwise meta-analysis results showed that MDED was significantly better than NT in improving ALT [SMD 1.99, 95% CI (0.38, 3.60)]. In terms of improving TC and LDL, ATS was significantly better than NT [SMD 0.19, 95% CI (0.03, 0.36)] [SMD 0.18, 95% CI (0.01, 0.35)].Conclusion: Our study showed that PTC is most likely to be the most effective treatment for improving NAFLD indicators. Professional advice on diet or exercise was more effective in treating NAFLD than no intervention.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xiaoqian Jin
- Rehabilitation Medicine Department, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hancheng Li
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xianyu Zhang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Xi Chen
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuan Lu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Chenliang Chu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong, China
- *Correspondence: Chenliang Chu,
| |
Collapse
|
6
|
Koning M, Herrema H, Nieuwdorp M, Meijnikman AS. Targeting nonalcoholic fatty liver disease via gut microbiome-centered therapies. Gut Microbes 2023; 15:2226922. [PMID: 37610978 PMCID: PMC10305510 DOI: 10.1080/19490976.2023.2226922] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Humans possess abundant amounts of microorganisms, including bacteria, fungi, viruses, and archaea, in their gut. Patients with nonalcoholic fatty liver disease (NAFLD) exhibit alterations in their gut microbiome and an impaired gut barrier function. Preclinical studies emphasize the significance of the gut microbiome in the pathogenesis of NAFLD. In this overview, we explore how adjusting the gut microbiome could serve as an innovative therapeutic strategy for NAFLD. We provide a summary of current information on untargeted techniques such as probiotics and fecal microbiota transplantation, as well as targeted microbiome-focused therapies including engineered bacteria, prebiotics, postbiotics, and phages for the treatment of NAFLD.
Collapse
Affiliation(s)
- Mijra Koning
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Abraham S. Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| |
Collapse
|