1
|
He Y, Tu M, Gan W, Zhu Z, Mushtaq M, Al-Mamun M, Deng J, Yang H, Wang Z, Balogun MS. Efficient Alkaline Freshwater/Seawater Hydrogen Production via Heterogeneous N-Doped FeMoO 4/Mo 2N Rod-Shaped Electrocatalysts. CHEMSUSCHEM 2025; 18:e202401425. [PMID: 39570669 DOI: 10.1002/cssc.202401425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/05/2024] [Indexed: 03/18/2025]
Abstract
Durable and efficient Fe-based electrocatalysts in alkaline freshwater/seawater electrolysis is highly desirable but persists a significant challenge. Herein, we report a durable and robust heterogenous nitrogen-doped FeMoO4/Mo2N rod-shaped catalyst on nickel foam (denoted NF@FMO/MN) affording hydrogen evolution reaction (HER) low overpotentials of 23/29 mV@10 mA cm-2 and 112/159 mV@100 mA cm-2 in both alkaline freshwater/seawater electrolytes, respectively. These results are significantly superior to the pristine FeMoO4 catalyst. Theoretical calculations consistently reveals that the combination of N-FeMoO4 and Mo2N effectively reduces water activation energy barrier, modulates the sluggish water-dissociation kinetics and accelerates the hydrogen adsorption process for efficient HER. The enhanced HER performance of the as-designed NF@FMO/MN catalyst is attributed to the in situ hetero-interfacial engineering between N-doped FeMoO4 and Mo2N. This present work nurtures the progress of FeMo-based electrocatalysts in alkaline freshwater/seawater electrolysis.
Collapse
Affiliation(s)
- Yanxiang He
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
| | - Meilian Tu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
| | - Weijiang Gan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Zhixiao Zhu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
| | - Muhammad Mushtaq
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Jianqiu Deng
- School, of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, People's Republic of China
| | - Hao Yang
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Zhongmin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - M-Sadeeq Balogun
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
- School, of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, People's Republic of China
| |
Collapse
|
2
|
Wakolo SW, Syouji A, Sakai M, Nishiyama H, Inukai J. Coherent anti-Stokes Raman scattering spectroscopy system for observation of water molecules in anion exchange membrane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123875. [PMID: 38217988 DOI: 10.1016/j.saa.2024.123875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Anion exchange membrane fuel cells (AEMFCs) provide one of the most feasible remedies to fuel cells' dependency on the dwindling Pt group catalysts. Nevertheless, AEMFCs still suffer reduced durability, which requires an in-depth understanding of their membranes. The low thermal endurance of the anion exchange membranes (AEMs) usually limits the direct application of powerful techniques, such as Raman spectroscopy. We sought to establish a system for coherent anti-Stokes Raman scattering (CARS) spectroscopy capable of taking measurements inside an AEM rapidly and accurately without photodamage. A 785 nm CARS system was newly developed to study the water species in an AEM (QPAF-4) located vertically in a fuel cell. From the results of water measurement in a QPAF-4 membrane, the OH-related region was deconvoluted into nine Gaussian peaks: Five H-bonded OH peaks, non-H-bonded OH, OH-, and two CH peaks. The H-bonded species increased with increasing relative humidity, but the other species remained constant. These results open unlimited possibilities for studying and comparing different AEMFCs, enabling more rapid technology optimization.
Collapse
Affiliation(s)
- Solomon Wekesa Wakolo
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Atsushi Syouji
- Center for Basic Education in Faculty of Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Masaru Sakai
- Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Kofu, Yamanashi 400-8510, Japan
| | - Hiromichi Nishiyama
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, 6-43 Miyamae, Kofu, Yamanashi 400-0021, Japan.
| | - Junji Inukai
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, 6-43 Miyamae, Kofu, Yamanashi 400-0021, Japan; Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8510, Japan.
| |
Collapse
|
3
|
Sen P. Computational screening of layered metal chalcogenide materials for HER electrocatalysts, and its synergy with experiments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:223002. [PMID: 38408384 DOI: 10.1088/1361-648x/ad2d45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Layered materials have emerged as attractive candidates in our search for abundant, inexpensive and efficient hydrogen evolution reaction (HER) catalysts, due to larger specific area these offer. Among these, transition metal dichalcogenides have been studied extensively, while ternary transition metal tri-chalcogenides have emerged as promising candidates recently. Computational screening has emerged as a powerful tool to identify the promising materials out of an initial set for specific applications, and has been employed for identifying HER catalysts also. This article presents a comprehensive review of how computational screening studies based on density functional calculations have successfully identified the promising materials among the layered transition metal di- and tri-chalcogenides. Synergy of these computational studies with experiments is also reviewed. It is argued that experimental verification of the materials, predicted to be efficient catalysts but not yet tested, will enlarge the list of materials that hold promise to replace expensive platinum, and will help ushering in the much awaited hydrogen economy.
Collapse
Affiliation(s)
- Prasenjit Sen
- Harish-Chandra Research Institute, A CI of HBNI, Chhatnag Road, Jhunsi, Prayagraj 211019, U.P., India
| |
Collapse
|