1
|
Sahm F, Bertero L, Brandner S, Capper D, Goldbrunner R, Jenkinson MD, Kalamarides M, Lamszus K, Albert NL, Mair MJ, Berghoff AS, Mawrin C, Wirsching HG, Maas SLN, Raleigh DR, Reifenberger G, Schweizer L, Suwala AK, Tabatabai G, Tabouret E, Short S, Wen PY, Weller M, Le Rhun E, Wesseling P, van den Bent M, Preusser M. European Association of Neuro-Oncology guideline on molecular testing of meningiomas for targeted therapy selection. Neuro Oncol 2025; 27:869-883. [PMID: 39577862 PMCID: PMC12083233 DOI: 10.1093/neuonc/noae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Indexed: 11/24/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors of adults. For meningiomas that progress or recur despite surgical resection and radiotherapy, additional treatment options are limited due to a lack of proven efficacy. Meningiomas show recurring molecular aberrations, which may serve as predictive markers for systemic pharmacotherapies with targeted drugs or immunotherapy, radiotherapy, or radioligand therapy. Here, we review the evidence for a predictive role of a wide range of molecular alterations and markers including NF2, AKT1, SMO, SMARCE1, PIK3CA, CDKN2A/B, CDK4/6, TERT, TRAF7, BAP1, KLF4,ARID1/2, SUFU, PD-L1, SSTR2A, PR/ER, mTOR, VEGF(R), PDGFR, as well as homologous recombination deficiency, genomic copy number variations, DNA methylation classes, and combined gene expression profiles. In our assessment based on the established ESMO ESCAT (European Society for Medical Oncology Scale for Clinical Actionability of molecular Targets) evidence-level criteria, no molecular target reached ESCAT I ("ready for clinical use") classification, and only mTOR pathway activation and NF2 alterations reached ESCAT II ("investigational") classification, respectively. Our evaluations may guide targeted therapy selection in clinical practice and clinical trial efforts and highlight areas for which additional research is warranted.
Collapse
Affiliation(s)
- Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg Gemany and CCU Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - David Capper
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roland Goldbrunner
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, University of Liverpool and Walton Centre, Liverpool, UK
| | - Michel Kalamarides
- Department of Neurosurgery, Pitie-Salpetriere Hospital, AP-HP Sorbonne Université, Paris, France
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Hans-Georg Wirsching
- Department of Neurology, Brain Tumor Center & Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sybren L N Maas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - David R Raleigh
- Departments of Radiation Oncology, Neurological Surgery, and Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Leonille Schweizer
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Abigail K Suwala
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg Gemany and CCU Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, DKTK partner site Tübingen, University of Tübingen, Germany
| | - Emeline Tabouret
- Aix-Marseille Universite, APHM, CNRS, INP, Institut Neurophysiopathol, GlioME Team, Plateforme PETRA, CHU Timone, Service de Neurooncologie, Marseille, France
| | - Susan Short
- Department of Oncology, Leeds Institute of Medical Research at St James’s Hospital, Leeds, UK
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Brain Tumor Center & Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Emilie Le Rhun
- Department of Medical Oncology and Hematology, Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Hutchings C, Sela-Donenfeld D. Primer on FGF3. Differentiation 2024; 139:100730. [PMID: 37741710 DOI: 10.1016/j.diff.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Though initially discovered as a proto-oncogene in virally induced mouse mammary tumors, FGF3 is primarily active in prenatal stages, where it is found at various sites at specific times. FGF3 is crucial during development, as its roles include tail formation, inner ear development and hindbrain induction and patterning. FGF3 expression and function are highly conserved in vertebrates, while it also interacts with other FGFs in various developmental processes. Intriguingly, while it is classified as a classical paracrine signaling factor, murine FGF3 was uniquely found to also act in an intracrine manner, depending on alternative translation initiation sites. Corresponding with its conserved role in inner ear morphogenesis, mutations in FGF3 in humans are associated with LAMM syndrome, a disorder that include hearing loss and inner ear malformations. While recent studies indicate of some FGF3 presence in post-natal stages, emerging evidences of its upregulation in various human tumors and cariogenic processes in mouse models, highlights the importance of its close regulation in adult tissues. Altogether, the broad and dynamic expression pattern and regulation of FGF3 in embryonic and adult tissues together with its link to congenital malformations and cancer, calls for further discoveries of its diverse roles in health and disease.
Collapse
Affiliation(s)
- Carmel Hutchings
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Szulzewsky F, Thirimanne HN, Holland EC. Meningioma: current updates on genetics, classification, and mouse modeling. Ups J Med Sci 2024; 129:10579. [PMID: 38571886 PMCID: PMC10989216 DOI: 10.48101/ujms.v129.10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
Meningiomas, the most common primary brain tumors in adults, are often benign and curable by surgical resection. However, a subset is of higher grade, shows aggressive growth behavior as well as brain invasion, and often recurs even after several rounds of surgery. Increasing evidence suggests that tumor classification and grading primarily based on histopathology do not always accurately predict tumor aggressiveness and recurrence behavior. The underlying biology of aggressive treatment-resistant meningiomas and the impact of specific genetic aberrations present in these high-grade tumors is still only insufficiently understood. Therefore, an in-depth research into the biology of this tumor type is warranted. More recent studies based on large-scale molecular data such as whole exome/genome sequencing, DNA methylation sequencing, and RNA sequencing have provided new insights into the biology of meningiomas and have revealed new risk factors and prognostic subtypes. The most common genetic aberration in meningiomas is functional loss of NF2 and occurs in both low- and high-grade meningiomas, whereas NF2-wildtype meningiomas are enriched for recurrent mutations in TRAF7, KLF4, AKT1, PI3KCA, and SMO and are more frequently benign. Most meningioma mouse models are based on patient-derived xenografts and only recently have new genetically engineered mouse models of meningioma been developed that will aid in the systematic evaluation of specific mutations found in meningioma and their impact on tumor behavior. In this article, we review recent advances in the understanding of meningioma biology and classification and highlight the most common genetic mutations, as well as discuss new genetically engineered mouse models of meningioma.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
4
|
Tsitsikov EN, Hameed S, Tavakol SA, Stephens TM, Tsytsykova AV, Garman L, Bi WL, Dunn IF. Specific gene expression signatures of low grade meningiomas. Front Oncol 2023; 13:1126550. [PMID: 36937440 PMCID: PMC10016690 DOI: 10.3389/fonc.2023.1126550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Meningiomas are the most common primary central nervous system (CNS) tumors in adults, representing approximately one-third of all primary adult CNS tumors. Although several recent publications have proposed alternative grading systems of meningiomas that incorporate genomic and/or epigenomic data to better predict meningioma recurrence and progression-free survival, our understanding of driving forces of meningioma development is still limited. Objective To define gene expression signatures of the most common subtypes of meningiomas to better understand cellular processes and signaling pathways specific for each tumor genotype. Methods We used RNA sequencing (RNA-seq) to determine whole transcriptome profiles of twenty meningiomas with genomic alterations including NF2 inactivation, loss of chr1p, and missense mutations in TRAF7, AKT1 and KLF4. Results The analysis revealed that meningiomas with NF2 gene inactivation expressed higher levels of BCL2 and GLI1 compared with tumors harboring TRAF7 missense mutations. Moreover, NF2 meningiomas were subdivided into two distinct groups based on additional loss of chr1p. NF2 tumors with intact chr1p were characterized by the high expression of tumor suppressor PTCH2 compared to NF2 tumors with chr1p loss. Taken together with the high expression of BCL2 and GLI1, these results suggest that activation of Sonic Hedgehog pathway may contribute to NF2 meningioma development. In contrast, NF2 tumors with chr1p loss expressed high levels of transcription factor FOXD3 and its antisense RNA FOXD3-AS1. Examination of TRAF7 tumors demonstrated that TRAF7 regulates a number of biomechanically responsive genes (KRT6a, KRT16, IL1RL1, and AQP3 among others). Interestingly, AKT1 and KLF4 meningiomas expressed genes specific for PI3K/AKT signaling pathway, suggesting overlapping gene signatures between the two subtypes. In addition, KLF4 meningiomas had high expression of carcinoembryonic antigen family members CEACAM6 and CEACAM5. Conclusions Each group of meningiomas displayed a unique gene expression signature suggesting signaling pathways potentially implicated in tumorigenesis. These findings will improve our understanding of meningioma tumorigenesis and prognosis.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sherwin A. Tavakol
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tressie M. Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Ian F. Dunn,
| |
Collapse
|