1
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2025; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
2
|
Tiwari R, Sharma R, Rajendran G, Borkowski GS, An SY, Schonfeld M, O’Sullivan J, Schipma MJ, Zhou Y, Courbon G, Thomson BR, David V, Quaggin SE, Thorp EB, Chandel NS, Kapitsinou PP. Postischemic inactivation of HIF prolyl hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis. J Clin Invest 2024; 135:e176207. [PMID: 39621585 PMCID: PMC11785929 DOI: 10.1172/jci176207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating postischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the 3 PHD isoforms in both mice and humans. Postischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. scRNA-Seq analysis of the postischemic endothelial PHD1, PHD2, and PHD3-deficient (PHDTiEC) kidney revealed an endothelial hypoxia and glycolysis-related gene signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed proinflammatory EC activation, reducing monocyte-EC interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajni Sharma
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ganeshkumar Rajendran
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gabriella S. Borkowski
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Si Young An
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael Schonfeld
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - James O’Sullivan
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Yalu Zhou
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guillaume Courbon
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Benjamin R. Thomson
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Valentin David
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Susan E. Quaggin
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edward B. Thorp
- Feinberg Cardiovascular & Renal Research Institute, and
- Department of Pathology, and
| | - Navdeep S. Chandel
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pinelopi P. Kapitsinou
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
4
|
Tiwari R, Sharma R, Rajendran G, Borkowski GS, An SY, Schonfeld M, O’Sullivan J, Schipma MJ, Zhou Y, Courbon G, David V, Quaggin SE, Thorp E, Chandel NS, Kapitsinou PP. Post-ischemic inactivation of HIF prolyl hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560700. [PMID: 37873349 PMCID: PMC10592920 DOI: 10.1101/2023.10.03.560700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. We found that post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial glycolytic transcriptional signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rajni Sharma
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ganeshkumar Rajendran
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gabriella S. Borkowski
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Si Young An
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Schonfeld
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - James O’Sullivan
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew J. Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yalu Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guillaume Courbon
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Valentin David
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E. Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Edward Thorp
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Navdeep S. Chandel
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pinelopi P. Kapitsinou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|