1
|
Kulkarni S, Tebar F, Rentero C, Zhao M, Sáez P. Competing signaling pathways controls electrotaxis. iScience 2025; 28:112329. [PMID: 40292314 PMCID: PMC12032939 DOI: 10.1016/j.isci.2025.112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Understanding how cells follow exogenous cues is a key question for biology, medicine, and bioengineering. Growing evidence shows that electric fields represent a precise and programmable method to control cell migration. Most data suggest that the polarization of membrane proteins and the following downstream signaling are central to electrotaxis. Unfortunately, how these multiple mechanisms coordinate with the motile machinery of the cell is still poorly understood. Here, we develop a mechanistic model that explains electrotaxis across different cell types. Using the zebrafish proteome, we identify membrane proteins directly related to migration signaling pathways that polarize anodally and cathodally. Further, we show that the simultaneous and asymmetric distribution of these membrane receptors establish multiple cooperative and competing stimuli for directing the anodal and cathodal migration of the cell. Using electric fields, we enhance, cancel, or switch directed cell migration, with clear implications in promoting tissue regeneration or arresting tumor progression.
Collapse
Affiliation(s)
- S. Kulkarni
- Laboratori de Càlcul Numèric (LaCàN), ETS de Ingeniería de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - F. Tebar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Cell Compartments and Signaling Group, Fundació de Recerca Clínic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - C. Rentero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Cell Compartments and Signaling Group, Fundació de Recerca Clínic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - M. Zhao
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - P. Sáez
- Laboratori de Càlcul Numèric (LaCàN), ETS de Ingeniería de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, Barcelona, Spain
- IMTech (Institute of Mathematics), Universitat Politècnica de Catalunya-BarcelonaTech., 08034 Barcelona, Spain
| |
Collapse
|
2
|
Lai H, Huo X, Han Y, Hu M, Kong X, Yin J, Qian J. Electrowriting patterns and electric field harness directional cell migration for skin wound healing. Mater Today Bio 2024; 26:101083. [PMID: 38757058 PMCID: PMC11097089 DOI: 10.1016/j.mtbio.2024.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Directional cell migration is a crucial step in wound healing, influenced by electrical and topographic stimulations. However, the underlying mechanism and the combined effects of these two factors on cell migration remain unclear. This study explores cell migration under various combinations of guided straight line (SL) spacing, conductivity, and the relative direction of electric field (EF) and SL. Electrowriting is employed to fabricate conductive (multiwalled carbon nanotube/polycaprolactone (PCL)) and nonconductive (PCL) SL, with narrow (50 μm) and wide (400 μm) spacing that controls the topographic stimulation strength. Results show that various combinations of electrical and topographic stimulation yield significantly distinct effects on cell migration direction and speed; cells migrate fastest with the most directivity in the case of conductive, narrow-spacing SL parallel to EF. A physical model based on intercellular interactions is developed to capture the underlying mechanism of cell migration under SL and EF stimulations, in agreement with experimental observations. In vivo skin wound healing assay further confirmed that the combination of EF (1 V cm-1) and parallelly aligned conductive fibers accelerated the wound healing process. This study presents a promising approach to direct cell migration and enhance wound healing by optimizing synergistic electrical and topographic stimulations.
Collapse
Affiliation(s)
- Huinan Lai
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaodan Huo
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Ying Han
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Minyu Hu
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiangren Kong
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Martina-Perez SF, Breinyn IB, Cohen DJ, Baker RE. Spatial heterogeneity in collective electrotaxis: continuum modelling and applications to optimal control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.580259. [PMID: 38463960 PMCID: PMC10925272 DOI: 10.1101/2024.02.28.580259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Collective electrotaxis is a phenomenon that occurs when a cellular collective, for example an epithelial monolayer, is subjected to an electric field. Biologically, it is well known that the velocity of migration during the collective electrotaxis of large epithelia exhibits significant spatial heterogeneity. In this work, we demonstrate that the heterogeneity of velocities in the electrotaxing epithelium can be accounted for by a continuum model of cue competition in different tissue regions. Having established a working model of competing migratory cues in the migrating epithelium, we develop and validate a reaction-convection-diffusion model that describes the movement of an epithelial monolayer as it undergoes electrotaxis. We use the model to predict how tissue size and geometry affect the collective migration of MDCK monolayers, and to propose several ways in which electric fields can be designed such that they give rise to a desired spatial pattern of collective migration. We conclude with two examples that demonstrate practical applications of the method in designing bespoke stimulation protocols.
Collapse
Affiliation(s)
| | - Isaac B. Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Daniel J. Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Ruth E. Baker
- Mathematical Institute, University of Oxd, Oxford, United Kingdom
| |
Collapse
|
4
|
Nwogbaga I, Kim AH, Camley BA. Physical limits on galvanotaxis. Phys Rev E 2023; 108:064411. [PMID: 38243498 DOI: 10.1103/physreve.108.064411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2023] [Indexed: 01/21/2024]
Abstract
Eukaryotic cells can polarize and migrate in response to electric fields via "galvanotaxis," which aids wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell's surface redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We find cells can achieve experimentally observed directionalities with either a few (∼100) highly polarized sensors or many (∼10^{4}) sensors with an ∼6-10% change in concentration across the cell. We also identify additional signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties and allowing for new tests to determine the specific molecules underlying galvanotaxis.
Collapse
Affiliation(s)
- Ifunanya Nwogbaga
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - A Hyun Kim
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Zhang Y, Lee RM, Zhu Z, Sun Y, Zhu K, Xu Z, Lin F, Pan T, Losert W, Zhao M. Protocol for electrotaxis of large epithelial cell sheets. STAR Protoc 2023; 4:102288. [PMID: 37149857 DOI: 10.1016/j.xpro.2023.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Here, we present a protocol for electrotaxis of large epithelial cell sheets without compromising the integrity of cell epithelia in a high-throughput customized directed current electrotaxis chamber. We describe the fabrication and use of polydimethylsiloxane stencils to control the size and shape of human keratinocyte cell sheets. We detail cell tracking, cell sheet contour assay, and particle image velocimetry to reveal the spatial and temporal motility dynamics of cell sheets. This approach is applicable to other collective cell migration studies. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Ophthalmology & Vision Science, University of California, California, Davis, CA 95616, USA; School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering, University of California, California, Davis, CA 95616, USA.
| | - Rachel M Lee
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Zijie Zhu
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering, University of California, California, Davis, CA 95616, USA
| | - Yaohui Sun
- Department of Ophthalmology & Vision Science, University of California, California, Davis, CA 95616, USA
| | - Kan Zhu
- Department of Ophthalmology & Vision Science, University of California, California, Davis, CA 95616, USA
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Tingrui Pan
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering, University of California, California, Davis, CA 95616, USA; Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Single-molecule Detection and Instrument Development, Shenzhen, Guangdong 518055, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, University of California, California, Davis, CA 95616, USA; Department of Dermatology, University of California, California, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Shaner S, Savelyeva A, Kvartuh A, Jedrusik N, Matter L, Leal J, Asplund M. Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives. LAB ON A CHIP 2023; 23:1531-1546. [PMID: 36723025 PMCID: PMC10013350 DOI: 10.1039/d2lc01045c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Upon cutaneous injury, the human body naturally forms an electric field (EF) that acts as a guidance cue for relevant cellular and tissue repair and reorganization. However, the direct current (DC) flow imparted by this EF can be impacted by a variety of diseases. This work delves into the impact of DC stimulation on both healthy and diabetic in vitro wound healing models of human keratinocytes, the most prevalent cell type of the skin. The culmination of non-metal electrode materials and prudent microfluidic design allowed us to create a compact bioelectronic platform to study the effects of different sustained (12 hours galvanostatic DC) EF configurations on wound closure dynamics. Specifically, we compared if electrotactically closing a wound's gap from one wound edge (i.e., uni-directional EF) is as effective as compared to alternatingly polarizing both the wound's edges (i.e., pseudo-converging EF) as both of these spatial stimulation strategies are fundamental to the eventual translational electrode design and strategy. We found that uni-directional electric guidance cues were superior in group keratinocyte healing dynamics by enhancing the wound closure rate nearly three-fold for both healthy and diabetic-like keratinocyte collectives, compared to their non-stimulated respective controls. The motility-inhibited and diabetic-like keratinocytes regained wound closure rates with uni-directional electrical stimulation (increase from 1.0 to 2.8% h-1) comparable to their healthy non-stimulated keratinocyte counterparts (3.5% h-1). Our results bring hope that electrical stimulation delivered in a controlled manner can be a viable pathway to accelerate wound repair, and also by providing a baseline for other researchers trying to find an optimal electrode blueprint for in vivo DC stimulation.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Anna Savelyeva
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Anja Kvartuh
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
| | - Nicole Jedrusik
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Lukas Matter
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
| | - José Leal
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104, Freiburg, Germany
- Division of Nursing and Medical Technology, Luleå University of Technology, 971 87, Luleå, Sweden
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, 412 58, Gothenburg, Sweden.
| |
Collapse
|