1
|
Wang J, Yuan T, Yang B, He Q, Zhu H. SDH defective cancers: molecular mechanisms and treatment strategies. Cell Biol Toxicol 2025; 41:74. [PMID: 40285898 PMCID: PMC12033202 DOI: 10.1007/s10565-025-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Succinate dehydrogenase (SDH), considered as the linkage between tricarboxylic acid cycle (TCA cycle) and electron transport chain, plays a vital role in adenosine triphosphate (ATP) production and cell physiology. SDH deficiency is a notable characteristic in many cancers. Recent studies have pinpointed the dysregulation of SDH can directly result its decreased catalytic activity and the accumulation of oncometabolite succinate, promoting tumor progression in different perspectives. This article expounds the various types of SDH deficiency in tumors and the corresponding pathological features. In addition, we discuss the mechanisms through which defective SDH fosters carcinogenesis, pioneering a categorization of these mechanisms as being either succinate-dependent or independent. Since SDH-deficient and cumulative succinate are regarded as the typical features of some cancers, like gastrointestinal stromal tumors, pheochromocytomas and paragangliomas, we summarize the presented medical management of SDH-deficient tumor patients in clinical and preclinical, identifying the potential strategies for future cancer therapeutics.
Collapse
Affiliation(s)
- Jiaer Wang
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310000, China
| | - Tao Yuan
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China
| | - Bo Yang
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Qiaojun He
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Hong Zhu
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Miklovicova S, Volpini L, Sanovec O, Monaco F, Vanova KH, Novak J, Boukalova S, Zobalova R, Klezl P, Tomasetti M, Bobek V, Fiala V, Vcelak J, Santarelli L, Bielcikova Z, Komrskova K, Kolostova K, Pacak K, Dvorakova S, Neuzil J. Mitochondrial respiratory complex II is altered in renal carcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167556. [PMID: 39486656 DOI: 10.1016/j.bbadis.2024.167556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a disease typified by anomalies in cell metabolism. The function of mitochondria, including subunits of mitochondrial respiratory complex II (CII), in particular SDHB, are often affected. Here we investigated the state and function of CII in RCC patients. METHODS We evaluated tumour tissue as well as the adjacent healthy kidney tissue of 78 patients with RCC of different histotypes, focusing on their mitochondrial function. As clear cell RCC (ccRCC) is by far the most frequent histotype of RCC, we focused on these patients, which were grouped based on the pathological WHO/ISUP grading system to low- and high-grade patients, indicative of prognosis. We also evaluated mitochondrial function in organoids derived from tumour tissue of 7 patients. RESULTS ccRCC tumours were characterized by mutated von Hippel-Lindau gene and high expression of carbonic anhydrase IX. We found low levels of mitochondrial DNA, protein and function, together with CII function in ccRCC tumour tissue, but not in other RCC types and non-tumour tissues. Mitochondrial content increased in high-grade tumours, while the function of CII remained low. Tumour organoids from ccRCC patients recapitulated molecular characteristics of RCC tissue. CONCLUSIONS Our findings suggest that the state of CII, epitomized by its assembly and SDHB levels, deteriorates with the progressive severity of ccRCC. These observations hold the potential for stratification of patients with worse prognosis and may guide the exploration of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Sona Miklovicova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Luca Volpini
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ondrej Sanovec
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Katerina Hadrava Vanova
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaromir Novak
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Petr Klezl
- General University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Vladimir Bobek
- General University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic; Department of Thoracic Surgery, Krajska zdravotni a.s. and UJEP, 400 11 Usti and Labem, Czech Republic; Department of Thoracic Surgery, Faculty of Medicine, Wroclaw University of Science and Technology, 51 377 Wroclaw, Poland
| | - Vojtech Fiala
- General University Hospital, 128 08 Prague, Czech Republic
| | - Josef Vcelak
- Department of Molecular Endocrinology, Institute of Endocrinology, 110 00 Prague, Czech Republic
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | | | - Katerina Komrskova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Katarina Kolostova
- General University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia; First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic.
| |
Collapse
|
3
|
Al Khazal FJ, Bhat SM, Zhu Y, de Araujo Correia CM, Zhou SX, Wilbanks BA, Folmes CD, Sieck GC, Favier J, Maher LJ. Similar deficiencies, different outcomes: succinate dehydrogenase loss in adrenal medulla vs. fibroblast cell culture models of paraganglioma. Cancer Metab 2024; 12:39. [PMID: 39716277 DOI: 10.1186/s40170-024-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
Heterozygosity for loss-of-function alleles of the genes encoding the four subunits of succinate dehydrogenase (SDHA, SDHB, SDHC, SDHD), as well as the SDHAF2 assembly factor predispose affected individuals to pheochromocytoma and paraganglioma (PPGL), two rare neuroendocrine tumors that arise from neural crest-derived paraganglia. Tumorigenesis results from loss of the remaining functional SDHx gene copy, leading to a cell with no functional SDH and a defective tricarboxylic acid (TCA) cycle. It is believed that the subsequent accumulation of succinate competitively inhibits multiple dioxygenase enzymes that normally suppress hypoxic signaling and demethylate histones and DNA, ultimately leading to increased expression of genes involved in angiogenesis and cell proliferation. Why SDH loss is selectively tumorigenic in neuroendocrine cells remains poorly understood. In the absence of SDH-loss tumor-derived cell models, the cellular burden of SDH loss and succinate accumulation have been investigated through conditional knockouts of SDH subunits in pre-existing murine or human cell lines with varying degrees of clinical relevance. Here we characterize two available murine SDH-loss cell lines, immortalized adrenally-derived premature chromaffin cells vs. immortalized fibroblasts, at a level of detail beyond that currently reported in the literature and with the intention of laying the foundation for future investigations into adaptive pathways and vulnerabilities in SDH-loss cells. We report different mechanistic and phenotypic manifestations of SDH subunit loss in the presented cellular contexts. These findings highlight similarities and differences in the cellular response to SDH loss between the two cell models. We show that adrenally-derived cells display more severe morphological cellular and mitochondrial alterations, yet are unique in preserving residual Complex I function, perhaps allowing them to better tolerate SDH loss, thus making them a closer model to SDH-loss PPGL relative to fibroblasts.(281 words).
Collapse
Affiliation(s)
- Fatimah J Al Khazal
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sanjana Mahadev Bhat
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yuxiang Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Sherry X Zhou
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brandon A Wilbanks
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN, 55905, USA
| | - Clifford D Folmes
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Judith Favier
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue contre le Cancer, Paris, 75006, France
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Huang Y, Tan D, Chen X, Xia B, Zhao Y, Chen X, Zhang Y, Zheng Z. Function of hemocyanin-mediated succinate dehydrogenase in glucose metabolism and immunity of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109689. [PMID: 38866349 DOI: 10.1016/j.fsi.2024.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Succinate dehydrogenase (SDH) is a crucial enzyme in the tricarboxylic acid cycle (TCA) and has established roles in immune function. However, the understanding of SDH in Penaeus vannamei, particularly its involvement in immune responses, is currently limited. Through affinity proteomics, a potential interaction between hemocyanin (HMC) and SDH in shrimp has been identified. The successful cloning of PvSDH in this study has revealed a high degree of evolutionary conservation. Additionally, it has been found that hemocyanin regulates SDH not only at the transcriptional and enzymatic levels but also through confirmed protein-protein interactions observed via Co-immunoprecipitation (CoIP) assay. Moreover, by combining PvHMC knockdown and Vibrio parahaemolyticus challenge, it was demonstrated that fumaric acid, a product of SDH, enhances the host's immune resistance to pathogen infection by modulating the expression of antimicrobial peptides. This research provides new insights into HMC as a crucial regulator of SDH, potentially impacting glycometabolism and the dynamics of immune responses.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Diqian Tan
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiyu Chen
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Bohou Xia
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
5
|
Kapoor S, Kalmegh V, Kumar H, Mandoli A, Shard A. Rare diseases and pyruvate kinase M2: a promising therapeutic connection. Drug Discov Today 2024; 29:103949. [PMID: 38492882 DOI: 10.1016/j.drudis.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme that regulates proliferating cell metabolism. The role of PKM2 in common diseases has been well established, but its role in rare diseases (RDs) is less understood. Over the past few years, PKM2 has emerged as a crucial player in RDs, including, neoplastic, respiratory, metabolic, and neurological disorders. Herein, we summarize recent findings and developments highlighting PKM2 as an emerging key player in RDs. We also discuss the current status of PKM2 modulation in RDs with particular emphasis on preclinical and clinical studies in addition to current challenges in the field.
Collapse
Affiliation(s)
- Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vaishnavi Kalmegh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, NIPER-A, Gandhinagar, Gujarat, India.
| | - Amit Mandoli
- Department of Biotechnology, NIPER-A, Gandhinagar, Gujarat, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Treger TD, Lawrence JEG, Anderson ND, Coorens THH, Letunovska A, Abby E, Lee-Six H, Oliver TRW, Al-Saadi R, Tullus K, Morcrette G, Hutchinson JC, Rampling D, Sebire N, Pritchard-Jones K, Young MD, Mitchell TJ, Jones PH, Tran M, Behjati S, Chowdhury T. Targetable NOTCH1 rearrangements in reninoma. Nat Commun 2023; 14:5826. [PMID: 37749094 PMCID: PMC10519988 DOI: 10.1038/s41467-023-41118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Reninomas are exceedingly rare renin-secreting kidney tumours that derive from juxtaglomerular cells, specialised smooth muscle cells that reside at the vascular inlet of glomeruli. They are the central component of the juxtaglomerular apparatus which controls systemic blood pressure through the secretion of renin. We assess somatic changes in reninoma and find structural variants that generate canonical activating rearrangements of, NOTCH1 whilst removing its negative regulator, NRARP. Accordingly, in single reninoma nuclei we observe excessive renin and NOTCH1 signalling mRNAs, with a concomitant non-excess of NRARP expression. Re-analysis of previously published reninoma bulk transcriptomes further corroborates our observation of dysregulated Notch pathway signalling in reninoma. Our findings reveal NOTCH1 rearrangements in reninoma, therapeutically targetable through existing NOTCH1 inhibitors, and indicate that unscheduled Notch signalling may be a disease-defining feature of reninoma.
Collapse
Affiliation(s)
- Taryn D Treger
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | | | - Tim H H Coorens
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| | - Aleksandra Letunovska
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Emilie Abby
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Henry Lee-Six
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Reem Al-Saadi
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Kjell Tullus
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Guillaume Morcrette
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - J Ciaran Hutchinson
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Dyanne Rampling
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Neil Sebire
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | | | | | - Thomas J Mitchell
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Early Cancer Institute, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 OXZ, UK
| | - Maxine Tran
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, NW3 2QG, UK.
- Faculty of Medical Sciences, Division of Surgery and Interventional Science, University College London, London, NW3 2PS, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Tanzina Chowdhury
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK.
| |
Collapse
|
7
|
Zecchini V, Paupe V, Herranz-Montoya I, Janssen J, Wortel IMN, Morris JL, Ferguson A, Chowdury SR, Segarra-Mondejar M, Costa ASH, Pereira GC, Tronci L, Young T, Nikitopoulou E, Yang M, Bihary D, Caicci F, Nagashima S, Speed A, Bokea K, Baig Z, Samarajiwa S, Tran M, Mitchell T, Johnson M, Prudent J, Frezza C. Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature 2023; 615:499-506. [PMID: 36890229 PMCID: PMC10017517 DOI: 10.1038/s41586-023-05770-w] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023]
Abstract
Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.
Collapse
Affiliation(s)
- Vincent Zecchini
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Irene Herranz-Montoya
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Joëlle Janssen
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Inge M N Wortel
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Department of Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Ashley Ferguson
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Suvagata Roy Chowdury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Marc Segarra-Mondejar
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Matterworks, Somerville, MA, USA
| | - Gonçalo C Pereira
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Laura Tronci
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Cogentech SRL Benefit Corporation, Milan, Italy
| | - Timothy Young
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | | | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Dóra Bihary
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- VIB KU Leuven Center for Cancer Biology, Leuven, Belgium
| | | | - Shun Nagashima
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Alyson Speed
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Kalliopi Bokea
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, UCL, London, UK
| | - Zara Baig
- Division of Infection and Immunity, Institute of Immunity and Transplantation, UCL, London, UK
| | - Shamith Samarajiwa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Maxine Tran
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, UCL, London, UK
| | - Thomas Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mark Johnson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK.
- CECAD Research Centre, University of Cologne, Cologne, Germany.
| |
Collapse
|