1
|
Wiese H, Schweinberger SR, Kovács G. The neural dynamics of familiar face recognition. Neurosci Biobehav Rev 2024; 167:105943. [PMID: 39557351 DOI: 10.1016/j.neubiorev.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Humans are highly efficient at recognising familiar faces. However, previous EEG/ERP research has given a partial and fragmented account of the neural basis of this remarkable ability. We argue that this is related to insufficient consideration of fundamental characteristics of familiar face recognition. These include image-independence (recognition across different pictures), levels of familiarity (familiar faces vary hugely in duration and intensity of our exposure to them), automaticity (we cannot voluntarily withhold from recognising a familiar face), and domain-selectivity (the degree to which face familiarity effects are selective). We review recent EEG/ERP work, combining uni- and multivariate methods, that has systematically targeted these shortcomings. We present a theoretical account of familiar face recognition, dividing it into early visual, domain-sensitive and domain-general phases, and integrating image-independence and levels of familiarity. Our account incorporates classic and more recent concepts, such as multi-dimensional face representation and course-to-fine processing. While several questions remain to be addressed, this new account represents a major step forward in our understanding of the neurophysiological basis of familiar face recognition.
Collapse
|
2
|
Das S, Mangun GR, Ding M. Perceptual Expertise and Attention: An Exploration using Deep Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.617743. [PMID: 39464001 PMCID: PMC11507720 DOI: 10.1101/2024.10.15.617743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Perceptual expertise and attention are two important factors that enable superior object recognition and task performance. While expertise enhances knowledge and provides a holistic understanding of the environment, attention allows us to selectively focus on task-related information and suppress distraction. It has been suggested that attention operates differently in experts and in novices, but much remains unknown. This study investigates the relationship between perceptual expertise and attention using convolutional neural networks (CNNs), which are shown to be good models of primate visual pathways. Two CNN models were trained to become experts in either face or scene recognition, and the effect of attention on performance was evaluated in tasks involving complex stimuli, such as superimposed images containing superimposed faces and scenes. The goal was to explore how feature-based attention (FBA) influences recognition within and outside the domain of expertise of the models. We found that each model performed better in its area of expertise-and that FBA further enhanced task performance, but only within the domain of expertise, increasing performance by up to 35% in scene recognition, and 15% in face recognition. However, attention had reduced or negative effects when applied outside the models' expertise domain. Neural unit-level analysis revealed that expertise led to stronger tuning towards category-specific features and sharper tuning curves, as reflected in greater representational dissimilarity between targets and distractors, which, in line with the biased competition model of attention, leads to enhanced performance by reducing competition. These findings highlight the critical role of neural tuning at single as well as network level neural in distinguishing the effects of attention in experts and in novices and demonstrate that CNNs can be used fruitfully as computational models for addressing neuroscience questions not practical with the empirical methods.
Collapse
Affiliation(s)
- Soukhin Das
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
| | - G R Mangun
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
- Department of Neurology, University of California, Davis
| | - Mingzhou Ding
- Department of Neurology, University of California, Davis
| |
Collapse
|
3
|
Tousi E, Mur M. The face inversion effect through the lens of deep neural networks. Proc Biol Sci 2024; 291:20241342. [PMID: 39137884 PMCID: PMC11321844 DOI: 10.1098/rspb.2024.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Ehsan Tousi
- Department of Psychology, Western University, 1151 Richmond Street, London, OntarioN6A 3K7, Canada
- Neuroscience Graduate Program, Western University, 1151 Richmond Street, London, OntarioN6A 3K7, Canada
| | - Marieke Mur
- Department of Psychology, Western University, 1151 Richmond Street, London, OntarioN6A 3K7, Canada
- Department of Computer Science, Western University, 1151 Richmond Street, London, OntarioN6A 3K7, Canada
| |
Collapse
|
4
|
Op de Beeck H, Bracci S. Going after the bigger picture: Using high-capacity models to understand mind and brain. Behav Brain Sci 2023; 46:e404. [PMID: 38054291 DOI: 10.1017/s0140525x2300153x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Deep neural networks (DNNs) provide a unique opportunity to move towards a generic modelling framework in psychology. The high representational capacity of these models combined with the possibility for further extensions has already allowed us to investigate the forest, namely the complex landscape of representations and processes that underlie human cognition, without forgetting about the trees, which include individual psychological phenomena.
Collapse
Affiliation(s)
| | - Stefania Bracci
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy ://webapps.unitn.it/du/en/Persona/PER0076943/Curriculum
| |
Collapse
|
5
|
Yovel G, Abudarham N. Why psychologists should embrace rather than abandon DNNs. Behav Brain Sci 2023; 46:e414. [PMID: 38054326 DOI: 10.1017/s0140525x2300167x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Deep neural networks (DNNs) are powerful computational models, which generate complex, high-level representations that were missing in previous models of human cognition. By studying these high-level representations, psychologists can now gain new insights into the nature and origin of human high-level vision, which was not possible with traditional handcrafted models. Abandoning DNNs would be a huge oversight for psychological sciences.
Collapse
Affiliation(s)
- Galit Yovel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel ; https://people.socsci.tau.ac.il/mu/galityovel/
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Naphtali Abudarham
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel ; https://people.socsci.tau.ac.il/mu/galityovel/
| |
Collapse
|
6
|
van Dyck LE, Gruber WR. Modeling Biological Face Recognition with Deep Convolutional Neural Networks. J Cogn Neurosci 2023; 35:1521-1537. [PMID: 37584587 DOI: 10.1162/jocn_a_02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Deep convolutional neural networks (DCNNs) have become the state-of-the-art computational models of biological object recognition. Their remarkable success has helped vision science break new ground, and recent efforts have started to transfer this achievement to research on biological face recognition. In this regard, face detection can be investigated by comparing face-selective biological neurons and brain areas to artificial neurons and model layers. Similarly, face identification can be examined by comparing in vivo and in silico multidimensional "face spaces." In this review, we summarize the first studies that use DCNNs to model biological face recognition. On the basis of a broad spectrum of behavioral and computational evidence, we conclude that DCNNs are useful models that closely resemble the general hierarchical organization of face recognition in the ventral visual pathway and the core face network. In two exemplary spotlights, we emphasize the unique scientific contributions of these models. First, studies on face detection in DCNNs indicate that elementary face selectivity emerges automatically through feedforward processing even in the absence of visual experience. Second, studies on face identification in DCNNs suggest that identity-specific experience and generative mechanisms facilitate this particular challenge. Taken together, as this novel modeling approach enables close control of predisposition (i.e., architecture) and experience (i.e., training data), it may be suited to inform long-standing debates on the substrates of biological face recognition.
Collapse
|
7
|
Yovel G, Grosbard I, Abudarham N. Deep learning models challenge the prevailing assumption that face-like effects for objects of expertise support domain-general mechanisms. Proc Biol Sci 2023; 290:20230093. [PMID: 37161322 PMCID: PMC10170201 DOI: 10.1098/rspb.2023.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
The question of whether task performance is best achieved by domain-specific, or domain-general processing mechanisms is fundemental for both artificial and biological systems. This question has generated a fierce debate in the study of expert object recognition. Because humans are experts in face recognition, face-like neural and cognitive effects for objects of expertise were considered support for domain-general mechanisms. However, effects of domain, experience and level of categorization, are confounded in human studies, which may lead to erroneous inferences. To overcome these limitations, we trained deep learning algorithms on different domains (objects, faces, birds) and levels of categorization (basic, sub-ordinate, individual), matched for amount of experience. Like humans, the models generated a larger inversion effect for faces than for objects. Importantly, a face-like inversion effect was found for individual-based categorization of non-faces (birds) but only in a network specialized for that domain. Thus, contrary to prevalent assumptions, face-like effects for objects of expertise do not support domain-general mechanisms but may originate from domain-specific mechanisms. More generally, we show how deep learning algorithms can be used to dissociate factors that are inherently confounded in the natural environment of biological organisms to test hypotheses about their isolated contributions to cognition and behaviour.
Collapse
Affiliation(s)
- Galit Yovel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69987, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69987, Israel
| | - Idan Grosbard
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69987, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69987, Israel
| | - Naphtali Abudarham
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69987, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69987, Israel
| |
Collapse
|
8
|
Avcu E, Hwang M, Brown KS, Gow DW. A tale of two lexica: Investigating computational pressures on word representation with neural networks. Front Artif Intell 2023; 6:1062230. [PMID: 37051161 PMCID: PMC10083378 DOI: 10.3389/frai.2023.1062230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction The notion of a single localized store of word representations has become increasingly less plausible as evidence has accumulated for the widely distributed neural representation of wordform grounded in motor, perceptual, and conceptual processes. Here, we attempt to combine machine learning methods and neurobiological frameworks to propose a computational model of brain systems potentially responsible for wordform representation. We tested the hypothesis that the functional specialization of word representation in the brain is driven partly by computational optimization. This hypothesis directly addresses the unique problem of mapping sound and articulation vs. mapping sound and meaning. Results We found that artificial neural networks trained on the mapping between sound and articulation performed poorly in recognizing the mapping between sound and meaning and vice versa. Moreover, a network trained on both tasks simultaneously could not discover the features required for efficient mapping between sound and higher-level cognitive states compared to the other two models. Furthermore, these networks developed internal representations reflecting specialized task-optimized functions without explicit training. Discussion Together, these findings demonstrate that different task-directed representations lead to more focused responses and better performance of a machine or algorithm and, hypothetically, the brain. Thus, we imply that the functional specialization of word representation mirrors a computational optimization strategy given the nature of the tasks that the human brain faces.
Collapse
Affiliation(s)
- Enes Avcu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Kevin Scott Brown
- Department of Pharmaceutical Sciences and School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - David W. Gow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital, Charlestown, MA, United States
- Department of Psychology, Salem State University, Salem, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States
| |
Collapse
|