1
|
Wu Q, Yang Y, Lin S, Geller DA, Yan Y. The microenvironment in the development of MASLD-MASH-HCC and associated therapeutic in MASH-HCC. Front Immunol 2025; 16:1569915. [PMID: 40370443 PMCID: PMC12074932 DOI: 10.3389/fimmu.2025.1569915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a series of obesity-related metabolic liver diseases, ranging from relatively benign hepatic steatosis to metabolic-associated steatohepatitis (MASH). With the changes in lifestyle, its incidence and prevalence have risen to epidemic proportions globally. In recent years, an increasing amount of evidence has indicated that the hepatic microenvironment is involved in the pathophysiological processes of MASH-induced liver fibrosis and the formation of hepatocellular carcinoma (HCC). The hepatic microenvironment is composed of various parenchymal and non-parenchymal cells, which communicate with each other through various factors. In this review, we focus on the changes in hepatocytes, cholangiocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KC), dendritic cells (DC), neutrophils, monocytes, T and B lymphocytes, natural killer cells (NK), natural killer T cells (NKT), mucosal-associated invariant T cells (MAIT), γδT cells, and gut microbiota during the progression of MASLD. Furthermore, we discuss promising therapeutic strategies targeting the microenvironment of MASLD-MASH-HCC.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixun Lin
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zhou H, Chen Q, Ma L, Li G, Kang X, Tang J, Wang H, Li S, Sun Y, Chang X. Hsa_circ_0001944 Regulates FXR/TLR4 Pathway and Ferroptosis to Alleviate Nickel Oxide Nanoparticles-Induced Collagen Formation in LX-2 Cells. TOXICS 2025; 13:265. [PMID: 40278581 PMCID: PMC12031114 DOI: 10.3390/toxics13040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Nickel oxide nanoparticles (NiONPs) can induce liver fibrosis, and their mechanism may be related to non-coding RNA, nuclear receptor signal transduction and ferroptosis, but the regulatory relationship between them is not clear. In this study, we aimed to investigate the role of hsa_circ_0001944 in regulating the Farnesol X receptor (FXR)/Toll-like receptor 4 (TLR4) pathway and ferroptosis in NiONPs-induced collagen deposition. We observed decreased FXR expression, increased TLR4 expression and alterations in ferroptosis features in both the rat liver fibrosis and the LX-2 cell collagen deposition model. To investigate the regulatory relationship among FXR, TLR4 and ferroptosis, we treated LX-2 cells with FXR agonist (GW4064), TLR4 inhibitor (TAK-242) and ferroptosis agonist (Erastin) combined with NiONPs. The results showed that TAK-242 alleviated collagen deposition by increasing ferroptosis features. Furthermore, GW4064 reduced the expression of TLR4, increased the ferroptosis features and alleviated collagen deposition. The results indicated that FXR inhibited the expression of TLR4 and enhanced the ferroptosis features, which were involved in the process of collagen deposition in LX-2 cells induced by NiONPs. Subsequently, we predicted that hsa_circ_0001944 might regulate FXR through bioinformatics analysis, and found NiONPs reduced the expression of hsa_circ_0001944 in LX-2 cells. Overexpression of hsa_circ_0001944 increased FXR level, reduced TLR4 level, increased the ferroptosis features and alleviated collagen deposition in LX-2 cells. In summary, we demonstrated that hsa_circ_0001944 regulates the FXR/TLR4 pathway and ferroptosis alleviate collagen formation induced by NiONPs.
Collapse
Affiliation(s)
- Haodong Zhou
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| | - Qingyang Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| | - Lijiao Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| | - Gege Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| | - Xi Kang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| | - Jiarong Tang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| | - Hui Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| | - Sheng Li
- The No. 2 People’s Hospital of Lanzhou, Lanzhou 730046, China;
| | - Yingbiao Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| | - Xuhong Chang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (H.Z.); (Q.C.); (L.M.); (G.L.); (X.K.); (J.T.); (H.W.); (Y.S.)
| |
Collapse
|
3
|
Schonfeld M, O’Neil M, Weinman SA, Tikhanovich I. Alcohol-induced epigenetic changes prevent fibrosis resolution after alcohol cessation in miceresolution. Hepatology 2024; 80:119-135. [PMID: 37943941 PMCID: PMC11078890 DOI: 10.1097/hep.0000000000000675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease is a major cause of alcohol-associated mortality. Recently, we identified hepatic demethylases lysine demethylase (KDM)5B and KDM5C as important epigenetic regulators of alcohol response in the liver. In this study, we aimed to investigate the role of KDM5 demethylases in alcohol-associated liver disease resolution. APPROACH AND RESULTS We showed that alcohol-induced liver steatosis rapidly resolved after alcohol cessation. In contrast, fibrosis persisted in the liver for up to 8 weeks after the end of alcohol exposure. Defects in fibrosis resolution were in part due to alcohol-induced KDM5B and KDM5C-dependent epigenetic changes in hepatocytes. Using cell-type-specific knockout mice, we found that adeno-associated virus-mediated knockout of KDM5B and KDM5C demethylases in hepatocytes at the time of alcohol withdrawal promoted fibrosis resolution. Single-cell ATAC sequencing analysis showed that during alcohol-associated liver disease resolution epigenetic cell states largely reverted to control conditions. In addition, we found unique epigenetic cell states distinct from both control and alcohol states and identified associated transcriptional regulators, including liver X receptor (LXR) alpha (α). In vitro and in vivo analysis confirmed that knockout of KDM5B and KDM5C demethylases promoted LXRα activity, likely through regulation of oxysterol biosynthesis, and this activity was critical for the fibrosis resolution process. Reduced LXR activity by small molecule inhibitors prevented fibrosis resolution in KDM5-deficient mice. CONCLUSIONS In summary, KDM5B and KDM5C demethylases prevent liver fibrosis resolution after alcohol cessation in part through suppression of LXR activity.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maura O’Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Bhattacharya M, Ramachandran P. Immunology of human fibrosis. Nat Immunol 2023; 24:1423-1433. [PMID: 37474654 DOI: 10.1038/s41590-023-01551-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Fibrosis, defined by the excess deposition of structural and matricellular proteins in the extracellular space, underlies tissue dysfunction in multiple chronic diseases. Approved antifibrotics have proven modest in efficacy, and the immune compartment remains, for the most part, an untapped therapeutic opportunity. Recent single-cell analyses have interrogated human fibrotic tissues, including immune cells. These studies have revealed a conserved profile of scar-associated macrophages, which localize to the fibrotic niche and interact with mesenchymal cells that produce pathological extracellular matrix. Here we review recent advances in the understanding of the fibrotic microenvironment in human diseases, with a focus on immune cell profiles and functional immune-stromal interactions. We also discuss the key role of the immune system in mediating fibrosis regression and highlight avenues for future study to elucidate potential approaches to targeting inflammatory cells in fibrotic disorders.
Collapse
Affiliation(s)
- Mallar Bhattacharya
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, Edinburgh, UK.
| |
Collapse
|
5
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|