1
|
Yan M, Martell S, Patwardhan SV, Dasog M. Key developments in magnesiothermic reduction of silica: insights into reactivity and future prospects. Chem Sci 2024:d4sc04065a. [PMID: 39309091 PMCID: PMC11409659 DOI: 10.1039/d4sc04065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Porous Si (p-Si) nanomaterials are an exciting class of inexpensive and abundant materials within the field of energy storage. Specifically, p-Si has been explored in battery anodes to improve charge storage capacity, to generate clean fuels through photocatalysis and photoelectrochemical processes, for the stoichiometric conversion of CO2 to value added chemicals, and as a chemical H2 storage material. p-Si can be made from synthetic, natural, and waste SiO2 sources through a facile and inexpensive method called magnesiothermic reduction (MgTR). This yields a material with tunable properties and excellent energy storage capabilities. In order to tune the physical properties that affect performance metrics of p-Si, a deeper understanding of the mechanism of the MgTR and factors affecting it is required. In this perspective, we review the key developments in MgTR and discuss the thermal management strategies used to control the properties of p-Si. Additionally, we explore future research directions and approaches to bridge the gap between laboratory-scale experiments and industrial applications.
Collapse
Affiliation(s)
- Maximilian Yan
- Department of Chemistry, Dalhousie University 6243 Alumni Crescent Halifax NS B3H4R2 Canada
- Department of Chemical and Biological Engineering, The University of Sheffield Mappin Street Sheffield S1 3JD UK
| | - Sarah Martell
- Department of Chemistry, Dalhousie University 6243 Alumni Crescent Halifax NS B3H4R2 Canada
| | - Siddharth V Patwardhan
- Department of Chemical and Biological Engineering, The University of Sheffield Mappin Street Sheffield S1 3JD UK
| | - Mita Dasog
- Department of Chemistry, Dalhousie University 6243 Alumni Crescent Halifax NS B3H4R2 Canada
| |
Collapse
|
2
|
Martell SA, Yan M, Coridan RH, Stone KH, Patwardhan SV, Dasog M. Unlocking the secrets of porous silicon formation: insights into magnesiothermic reduction mechanism using in situ powder X-ray diffraction studies. NANOSCALE HORIZONS 2024. [PMID: 39189699 DOI: 10.1039/d4nh00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The magnesiothermic reduction of SiO2 is an important reaction as it is a bulk method that produces porous Si for a wide range of applications directly from SiO2. While its main advantage is potential tunability, the reaction behavior and final product properties are heavily dependent on many parameters including feedstock type. However, a complete understanding of the reaction pathway has not yet been achieved. Here, using in situ X-ray diffraction analysis, for the first time, various pathways through which the magnesiothermic reduction reaction proceeds were mapped. Further, the key parameters and conditions that determine which pathways are favored were determined. It was discovered that the reaction onset temperatures can be as low as 348 ± 7 °C, which is significantly lower when compared to previously reported values. The onset temperature is dependent on the size of Mg particles used in the reaction. Further, Mg2Si was identified as a key intermediate rather than a reaction byproduct during the reduction process. Its rate of consumption is determined by the reaction temperature which needs to be >561 °C. These findings can enable process and product optimization of the magnesiothermic reduction process to manufacture and tune porous Si for a range of applications.
Collapse
Affiliation(s)
- Sarah A Martell
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.
| | - Maximilian Yan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Kevin H Stone
- SSRL Material Science Division, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Siddharth V Patwardhan
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Mita Dasog
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
3
|
Zhou C, Zhang G, Guo P, Ye C, Chen Z, Ma Z, Zhang M, Li J. Enhancing photoelectrochemical CO 2 reduction with silicon photonic crystals. Front Chem 2023; 11:1326349. [PMID: 38169620 PMCID: PMC10758474 DOI: 10.3389/fchem.2023.1326349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The effectiveness of silicon (Si) and silicon-based materials in catalyzing photoelectrochemistry (PEC) CO2 reduction is limited by poor visible light absorption. In this study, we prepared two-dimensional (2D) silicon-based photonic crystals (SiPCs) with circular dielectric pillars arranged in a square array to amplify the absorption of light within the wavelength of approximately 450 nm. By investigating five sets of n + p SiPCs with varying dielectric pillar sizes and periodicity while maintaining consistent filling ratios, our findings showed improved photocurrent densities and a notable shift in product selectivity towards CH4 (around 25% Faradaic Efficiency). Additionally, we integrated platinum nanoparticles, which further enhanced the photocurrent without impacting the enhanced light absorption effect of SiPCs. These results not only validate the crucial role of SiPCs in enhancing light absorption and improving PEC performance but also suggest a promising approach towards efficient and selective PEC CO2 reduction.
Collapse
Affiliation(s)
- Chu Zhou
- School of Engineering, University of Warwick, Coventry, United Kingdom
- Zhejiang Xinke Semiconductor Co., Ltd., Hangzhou, Zhejiang, China
| | - Gaotian Zhang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Peiyuan Guo
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Chenxi Ye
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Zhenjun Chen
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Ziyi Ma
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Menglong Zhang
- Zhejiang Xinke Semiconductor Co., Ltd., Hangzhou, Zhejiang, China
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Henríquez R, Nogales PS, Moreno PG, Cartagena EM, Bongiorno PL, Navarrete-Astorga E, Dalchiele EA. One-Step Hydrothermal Synthesis of Cu 2ZnSnS 4 Nanoparticles as an Efficient Visible Light Photocatalyst for the Degradation of Congo Red Azo Dye. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111731. [PMID: 37299634 DOI: 10.3390/nano13111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
A hydrothermal method was successfully employed to synthesize kesterite Cu2ZnSnS4 (CZTS) nanoparticles. X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and optical ultraviolet-visible (UV-vis) spectroscopy were used for characterization of structural, chemical, morphological, and optical properties. XRD results confirmed that a nanocrystalline CZTS phase corresponding to the kesterite structure was formed. Raman analysis confirmed the existence of single pure phase CZTS. XPS results revealed the oxidation states as Cu+, Zn2+, Sn4+, and S2-. FESEM and TEM micrograph images revealed the presence of nanoparticles with average sizes between 7 nm to 60 nm. The synthesized CZTS nanoparticles bandgap was found to be 1.5 eV which is optimal for solar photocatalytic degradation applications. The properties as a semiconductor material were evaluated through the Mott-Schottky analysis. The photocatalytic activity of CZTS has been investigated through photodegradation of Congo red azo dye solution under solar simulation light irradiation, proving to be an excellent photo-catalyst for CR where 90.2% degradation could be achieved in just 60 min. Furthermore, the prepared CZTS was reusable and can be repeatedly used to remove Congo red dye from aqueous solutions.
Collapse
Affiliation(s)
- Rodrigo Henríquez
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2340000, Chile
| | - Paula Salazar Nogales
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2340000, Chile
| | - Paula Grez Moreno
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2340000, Chile
| | - Eduardo Muñoz Cartagena
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2340000, Chile
| | - Patricio Leyton Bongiorno
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2340000, Chile
| | - Elena Navarrete-Astorga
- Laboratorio de Materiales y Superficie, Departamento de Física Aplicada I, Universidad de Málaga, 29071 Málaga, Spain
| | - Enrique A Dalchiele
- Instituto de Física, Facultad de Ingeniería, Herrera y Reissig 565, C.C. 30, Montevideo 11000, Uruguay
| |
Collapse
|