1
|
Tabassum A, Ata S, Alwadai N, Mnif W, Ali A, Ali A, Nazir A, Iqbal M. L-lysine and surfactant-assisted synthesis of NiCo bimetal oxides for electrochemical water splitting. iScience 2024; 27:110823. [PMID: 39654632 PMCID: PMC11626774 DOI: 10.1016/j.isci.2024.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 12/12/2024] Open
Abstract
In the present study, bimetallic oxides comprising nickel (Ni) and cobalt (Co) were synthesized using a facile hydrothermal method in the presence of CTAB and L-lysine. Their efficacy in catalyzing hydrogen production under alkaline conditions was assessed. Structural, vibrational, and morphological characteristics were analyzed utilizing X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) techniques. The SEM images revealed a needle-like shape which is due to the surfactant addition. The NiCo oxides exhibited the lowest onset potential of 83 mV for HER and 130 mV for OER under standard conditions. The catalysts needed a potential of 286 and 450 mV to attain a current density of 50 mA/cm2 along with Tafel slope values of 119 and 332 mV/dec for HER and OER, respectively. These results suggested that L-lysine as a surfactant is highly effective in the fabrication of NiCo bimetal oxides for electrolytic water splitting applications.
Collapse
Affiliation(s)
- Anila Tabassum
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Sadia Ata
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. BOX 199, Bisha 61922, Saudi Arabia
| | - Abid Ali
- Department of Allied Health Sciences, The University of Chenab, Gujarat 50700, Pakistan
| | - Abid Ali
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
2
|
Ahmad A, Nairan A, Feng Z, Zheng R, Bai Y, Khan U, Gao J. Unlocking the Potential of High Entropy Alloys in Electrochemical Water Splitting: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311929. [PMID: 38396229 DOI: 10.1002/smll.202311929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Indexed: 02/25/2024]
Abstract
The global pursuit of sustainable energy is focused on producing hydrogen through electrocatalysis driven by renewable energy. Recently, High entropy alloys (HEAs) have taken the spotlight in electrolysis due to their intriguing cocktail effect, broad design space, customizable electronic structure, and entropy stabilization effect. The tunability and complexity of HEAs allow a diverse range of active sites, optimizing adsorption strength and activity for electrochemical water splitting. This review comprehensively covers contemporary advancements in synthesis technique, design framework, and physio-chemical evaluation approaches for HEA-based electrocatalysts. Additionally, it explores design principles and strategies aimed at optimizing the catalytic activity, stability, and effectiveness of HEAs in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. Through an in-depth investigation of these aspects, the complexity inherent in constituent element interactions, reaction processes, and active sites associated with HEAs is aimed to unravel. Eventually, an outlook regarding challenges and impending difficulties and an outline of the future direction of HEA in electrocatalysis is provided. The thorough knowledge offered in this review will assist in formulating and designing catalysts based on HEAs for the next generation of electrochemistry-related applications.
Collapse
Affiliation(s)
- Abrar Ahmad
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Adeela Nairan
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhuo Feng
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruiming Zheng
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yelin Bai
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Usman Khan
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
3
|
Bolar S, Ito Y, Fujita T. Future prospects of high-entropy alloys as next-generation industrial electrode materials. Chem Sci 2024; 15:8664-8722. [PMID: 38873068 PMCID: PMC11168093 DOI: 10.1039/d3sc06784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
The rapid advancement of electrochemical processes in industrial applications has increased the demand for high-performance electrode materials. High-entropy alloys (HEAs), a class of multicomponent alloys with unique properties, have emerged as potential electrode materials owing to their enhanced catalytic activity, superior stability, and tunable electronic structures. This review explores contemporary developments in HEA-based electrode materials for industrial applications and identifies their advantages and challenges as compared to conventional commercial electrode materials in industrial aspects. The importance of tuning the composition, crystal structure, different phase formations, thermodynamic and kinetic parameters, and surface morphology of HEAs and their derivatives to achieve the predicted electrochemical performance is emphasized in this review. Synthetic procedures for producing potential HEA electrode materials are outlined, and theoretical discussions provide a roadmap for recognizing the ideal electrode materials for specific electrochemical processes in an industrial setting. A comprehensive discussion and analysis of various electrochemical processes (HER, OER, ORR, CO2RR, MOR, AOR, and NRR) and electrochemical applications (batteries, supercapacitors, etc.) is included to appraise the potential ability of HEAs as an electrode material in the near future. Overall, the design and development of HEAs offer a promising pathway for advancing industrial electrode materials with improved performance, selectivity, and stability, potentially paving the way for the next generation of electrochemical technology.
Collapse
Affiliation(s)
- Saikat Bolar
- School of Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba Tsukuba 305-8573 Japan
| | - Takeshi Fujita
- School of Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| |
Collapse
|
4
|
Yu X, Ding X, Yao Y, Gao W, Wang C, Wu C, Wu C, Wang B, Wang L, Zou Z. Layered High-Entropy Metallic Glasses for Photothermal CO 2 Methanation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312942. [PMID: 38354694 DOI: 10.1002/adma.202312942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Indexed: 02/16/2024]
Abstract
High entropy alloys and metallic glasses, as two typical metastable nanomaterials, have attracted tremendous interest in energy conversion catalysis due to their high reactivity in nonequilibrium states. Herein, a novel nanomaterial, layered high entropy metallic glass (HEMG), in a higher energy state than low-entropy alloys and its crystalline counterpart due to both the disordered elemental and structural arrangements, is synthesized. Specifically, the MnNiZrRuCe HEMG exhibits highly enhanced photothermal catalytic activity and long-term stability. An unprecedented CO2 methanation rate of 489 mmol g-1 h-1 at 330 °C is achieved, which is, to the authors' knowledge, the highest photothermal CO2 methanation rate in flow reactors. The remarkable activity originates from the abundant free volume and high internal energy state of HEMG, which lead to the extraordinary heterolytic H2 dissociation capacity. The high-entropy effect also ensures the excellent stability of HEMG for up to 450 h. This work not only provides a new perspective on the catalytic mechanism of HEMG, but also sheds light on the great catalytic potential in future carbon-negative industry.
Collapse
Affiliation(s)
- Xiwen Yu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Xue Ding
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
| | - Yingfang Yao
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Wanguo Gao
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Cheng Wang
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Chengyang Wu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Congping Wu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Bing Wang
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Macau Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| |
Collapse
|
5
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|