1
|
Holstein DM, Saliba A, Lozano D, Kim J, Sharma K, Lechleiter JD. β-hydroxybutyrate enhances brain metabolism in normoglycemia and hyperglycemia, providing cerebroprotection in a mouse stroke model. J Cereb Blood Flow Metab 2025:271678X251334222. [PMID: 40219805 PMCID: PMC11993551 DOI: 10.1177/0271678x251334222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Hyperglycemia in poorly controlled diabetes is widely recognized as detrimental to organ dysfunction. However, the acute effects of hyperglycemia on brain metabolism and function are not fully understood. The potential protective benefit of ketone bodies on mitochondrial function in the brain has also not been well characterized. Here, we evaluated the acute effects of hyperglycemia and β-hydroxybutyrate (BHB) on brain metabolism by employing a novel approach leveraging adenosine triphosphate (ATP)-dependence of bioluminescence originating from luciferin-luciferase activity. Oxygen consumption rate was measured in ex vivo live brain punches to further evaluate mitochondrial function. Our data demonstrate that brain metabolism in mice is affected by acute exposure to high glucose. This short-term effect of glucose exposure was reduced by co-administration with the ketone body BHB. Additionally, we investigated the functional relevance of BHB using an in vivo photothrombotic stroke model to assess its cerebroprotective effects in presence or absence of acute hyperglycemia. BHB significantly reduced infarct size in the brain stroke model, providing functional evidence for its protective role in the brain. These findings suggest that BHB may effectively mitigate the adverse effects of metabolic stress and ischemic events on brain metabolism and function.
Collapse
Affiliation(s)
- Deborah M Holstein
- Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Afaf Saliba
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Division of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Damian Lozano
- Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jiwan Kim
- Division of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Division of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - James D Lechleiter
- Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Holstein DM, Saliba A, Lozano D, Kim J, Sharma K, Lechleiter JD. β-Hydroxybutyrate enhances brain metabolism in normoglycemia and hyperglycemia, providing cerebroprotection in a mouse stroke model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639087. [PMID: 40060617 PMCID: PMC11888179 DOI: 10.1101/2025.02.19.639087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Hyperglycemia in poorly controlled diabetes is widely recognized as detrimental to organ dysfunction. However, the acute effects of hyperglycemia on brain metabolism and function are not fully understood. The potential protective benefit of ketone bodies on mitochondrial function in the brain has also not been well characterized. Here, we evaluated the acute effects of hyperglycemia and β-hydroxybutyrate (BHB) on brain metabolism by employing a novel approach leveraging adenosine triphosphate (ATP)-dependence of bioluminescence originating from luciferin-luciferase activity. Oxygen consumption rate was measured in ex vivo live brain punches to further evaluate mitochondrial function. Additionally, we investigated the functional relevance of BHB using an in vivo photothrombotic stroke model to assess its cerebroprotective effects. Our data demonstrate that brain metabolism in mice is affected by acute exposure to high glucose, at a level similar to consuming food or a beverage with high sucrose. This short-term effect of glucose exposure was reduced by co-administration with the ketone body BHB. Moreover, BHB significantly reduced infarct size in the brain stroke model, providing evidence for its functional protective role in the brain. These findings suggest that BHB may effectively mitigate the adverse effects of metabolic stress and ischemic events on brain metabolism and function.
Collapse
|
3
|
Snaebjornsson MT, Poeller P, Komkova D, Röhrig F, Schlicker L, Winkelkotte AM, Chaves-Filho AB, Al-Shami KM, Caballero CD, Koltsaki I, Vogel FCE, Frias-Soler RC, Rudalska R, Schwarz JD, Wolf E, Dauch D, Steuer R, Schulze A. Targeting aldolase A in hepatocellular carcinoma leads to imbalanced glycolysis and energy stress due to uncontrolled FBP accumulation. Nat Metab 2025; 7:348-366. [PMID: 39833612 PMCID: PMC11860237 DOI: 10.1038/s42255-024-01201-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Increased glycolytic flux is a hallmark of cancer; however, an increasing body of evidence indicates that glycolytic ATP production may be dispensable in cancer, as metabolic plasticity allows cancer cells to readily adapt to disruption of glycolysis by increasing ATP production via oxidative phosphorylation. Using functional genomic screening, we show here that liver cancer cells show a unique sensitivity toward aldolase A (ALDOA) depletion. Targeting glycolysis by disrupting the catalytic activity of ALDOA led to severe energy stress and cell cycle arrest in murine and human hepatocellular carcinoma cell lines. With a combination of metabolic flux analysis, metabolomics, stable-isotope tracing and mathematical modelling, we demonstrate that inhibiting ALDOA induced a state of imbalanced glycolysis in which the investment phase outpaced the payoff phase. Targeting ALDOA effectively converted glycolysis from an energy producing into an energy-consuming process. Moreover, we found that depletion of ALDOA extended survival and reduced cancer cell proliferation in an animal model of hepatocellular carcinoma. Thus, our findings indicate that induction of imbalanced glycolysis by targeting ALDOA presents a unique opportunity to overcome the inherent metabolic plasticity of cancer cells.
Collapse
Affiliation(s)
- Marteinn T Snaebjornsson
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Poeller
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daria Komkova
- Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Florian Röhrig
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alina M Winkelkotte
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Adriano B Chaves-Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kamal M Al-Shami
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carolina Dehesa Caballero
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ioanna Koltsaki
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberto Carlos Frias-Soler
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ramona Rudalska
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- IFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Jessica D Schwarz
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
- Biochemical Institute, University of Kiel, Kiel, Germany
| | - Daniel Dauch
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- IFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Tübingen, Germany
| | - Ralf Steuer
- Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Spellman MJ, Assaf T, Nangia S, Fernandez J, Nicholson KC, Shepard BD. Handling the sugar rush: the role of the renal proximal tubule. Am J Physiol Renal Physiol 2024; 327:F1013-F1025. [PMID: 39447117 PMCID: PMC11687834 DOI: 10.1152/ajprenal.00265.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024] Open
Abstract
Blood glucose homeostasis is critical to ensure the proper functioning of the human body. Through the processes of filtration, reabsorption, secretion, and metabolism, much of this task falls to the kidneys. With a rise in glucose and other added sugars, there is an increased burden on this organ, mainly the proximal tubule, which is responsible for all glucose reabsorption. In this review, we focus on the current physiological and cell biological functions of the renal proximal tubule as it works to reabsorb and metabolize glucose and fructose. We also highlight the physiological adaptations that occur within the proximal tubule as sugar levels rise under pathophysiological conditions including diabetes. This includes the detrimental impacts of an excess glucose load that leads to glucotoxicity. Finally, we explore some of the emerging therapeutics that modulate renal glucose handling and the systemic protection that can be realized by targeting the reabsorptive properties of the kidney.
Collapse
Affiliation(s)
- Michael J Spellman
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Tala Assaf
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Shivani Nangia
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Joel Fernandez
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Kyle C Nicholson
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
5
|
Darshi M, Kugathasan L, Maity S, Sridhar VS, Fernandez R, Limonte CP, Grajeda BI, Saliba A, Zhang G, Drel VR, Kim JJ, Montellano R, Tumova J, Montemayor D, Wang Z, Liu JJ, Wang J, Perkins BA, Lytvyn Y, Natarajan L, Lim SC, Feldman H, Toto R, Sedor JR, Patel J, Waikar SS, Brown J, Osman Y, He J, Chen J, Reeves WB, de Boer IH, Roy S, Vallon V, Hallan S, Gelfond JA, Cherney DZ, Sharma K, for the Kidney Precision Medicine Project, and the CRIC Study Investigators. Glycolytic lactate in diabetic kidney disease. JCI Insight 2024; 9:e168825. [PMID: 38855868 PMCID: PMC11382878 DOI: 10.1172/jci.insight.168825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
Lactate elevation is a well-characterized biomarker of mitochondrial dysfunction, but its role in diabetic kidney disease (DKD) is not well defined. Urine lactate was measured in patients with type 2 diabetes (T2D) in 3 cohorts (HUNT3, SMART2D, CRIC). Urine and plasma lactate were measured during euglycemic and hyperglycemic clamps in participants with type 1 diabetes (T1D). Patients in the HUNT3 cohort with DKD had elevated urine lactate levels compared with age- and sex-matched controls. In patients in the SMART2D and CRIC cohorts, the third tertile of urine lactate/creatinine was associated with more rapid estimated glomerular filtration rate decline, relative to first tertile. Patients with T1D demonstrated a strong association between glucose and lactate in both plasma and urine. Glucose-stimulated lactate likely derives in part from proximal tubular cells, since lactate production was attenuated with sodium-glucose cotransporter-2 (SGLT2) inhibition in kidney sections and in SGLT2-deficient mice. Several glycolytic genes were elevated in human diabetic proximal tubules. Lactate levels above 2.5 mM potently inhibited mitochondrial oxidative phosphorylation in human proximal tubule (HK2) cells. We conclude that increased lactate production under diabetic conditions can contribute to mitochondrial dysfunction and become a feed-forward component to DKD pathogenesis.
Collapse
Affiliation(s)
- Manjula Darshi
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Luxcia Kugathasan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Soumya Maity
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Vikas S. Sridhar
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Roman Fernandez
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Christine P. Limonte
- Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Brian I. Grajeda
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Afaf Saliba
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Guanshi Zhang
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Viktor R. Drel
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jiwan J. Kim
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Richard Montellano
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jana Tumova
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel Montemayor
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Zhu Wang
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Bruce A. Perkins
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Yuliya Lytvyn
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Loki Natarajan
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California USA
| | - Su Chi Lim
- Clinical Research Unit & Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Heath, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Harold Feldman
- Center for Clinical Epidemiology and Biostatistics and
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Toto
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - John R. Sedor
- Glickman Urology and Kidney and Lerner Research Institutes, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jiten Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - Sushrut S. Waikar
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Julia Brown
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yahya Osman
- Division of Nephrology, Department of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jiang He
- School of Public Health, Tulane University Medical Center, New Orleans, Louisiana, USA
| | - Jing Chen
- Division of Nephrology, Department of Medicine, New Orleans, Louisiana, USA
| | - W. Brian Reeves
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ian H. de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Sourav Roy
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Volker Vallon
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare Center, San Diego, California, USA
| | - Stein Hallan
- Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olav Hospital, Trondheim, Norway
| | - Jonathan A.L. Gelfond
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - David Z.I. Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Kumar Sharma
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
6
|
Gebhardt B, Jain A. Beyond the Beat: A Cardiac Anesthesiologist's Perspective on Cardiovascular-Kidney-Metabolic Health in Perioperative Care. J Cardiothorac Vasc Anesth 2024; 38:1078-1080. [PMID: 38467526 DOI: 10.1053/j.jvca.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Affiliation(s)
- Brian Gebhardt
- Department of Anesthesiology and Perioperative Medicine University of Massachusetts Medical Center, Worcester, MA
| | - Ankit Jain
- Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
7
|
Fontes PK, Dos Santos EC, da Rocha HC, de Lima CB, Milazzotto MP. Metabolic stressful environment drives epigenetic modifications in oviduct epithelial cells. Theriogenology 2024; 215:151-157. [PMID: 38070214 DOI: 10.1016/j.theriogenology.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
The oviduct provides a suitable microenvironment from the gametes' final maturation until initial embryo development. Dynamic functional changes are observed in the oviduct cells, mainly controlled by steroid hormones and well-orchestrated during the estrous cycle. However, based on the roles played by the oviduct, additional layers of complexity might be present in its regulatory process. There is a cellular process that includes metabolic adaptation that can guide molecular modifications. This process is known as metaboloepigenetics. Therefore, we aimed to better understand how this crosstalk occurs in oviductal epithelial cells (OEC). Due to limited in situ access to the oviduct, we used the primary in vitro cell culture as a culture model and glucose as a metabolic disturbed factor. For that, cells derived from the oviductal epithelial layer were collected from cows at either follicular or luteal stages (n = 4 animals per group). They were cultured on a monolayer culture system under normoglycemic (2.7 mM glucose) or hyperglycemic conditions (27 mM glucose). On day five of culture, attached cells were submitted to analysis of mitochondrial metabolism (mitochondrial membrane potential - MMP) and epigenetics markers (5- methylcytosine - 5 mC and histone 3 lysine 9 acetylation - H3K9ac). Moreover, the culture media were submitted to the metabolites analysis profile by Raman spectrometry. Data were analyzed considering the effect of glucose level (normoglycemic vs. hyperglycemic), stages when OEC were harvested (follicular vs. luteal), and their interaction (glucose level * cycle stage) by two-way ANOVA. As a result, the high glucose level decreased the H3K9ac and MMP levels but did not affect the 5 mC. Regardless of the metabolic profile of the culture media, the glucose level was the only factor that changed the Raman shifts abundance. Although this present study evaluated oviductal epithelial cells after being submitted to an in vitro monolayer culture system, which is known to lead to cell dedifferentiation, yet, these results provide evidence of a relationship between epigenetic reprogramming and energy metabolism under these cell culture conditions. In conclusion, the levels of metabolites in culture media may be crucial for cellular function and differentiation, meaning that it should be considered in studies culturing oviductal cells.
Collapse
Affiliation(s)
- Patricia Kubo Fontes
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Erika Cristina Dos Santos
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Heloise Cale da Rocha
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Camila Bruna de Lima
- Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec, Canada
| | - Marcella Pecora Milazzotto
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil.
| |
Collapse
|
8
|
Tang W, Wei Q. The metabolic pathway regulation in kidney injury and repair. Front Physiol 2024; 14:1344271. [PMID: 38283280 PMCID: PMC10811252 DOI: 10.3389/fphys.2023.1344271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Kidney injury and repair are accompanied by significant disruptions in metabolic pathways, leading to renal cell dysfunction and further contributing to the progression of renal pathology. This review outlines the complex involvement of various energy production pathways in glucose, lipid, amino acid, and ketone body metabolism within the kidney. We provide a comprehensive summary of the aberrant regulation of these metabolic pathways in kidney injury and repair. After acute kidney injury (AKI), there is notable mitochondrial damage and oxygen/nutrient deprivation, leading to reduced activity in glycolysis and mitochondrial bioenergetics. Additionally, disruptions occur in the pentose phosphate pathway (PPP), amino acid metabolism, and the supply of ketone bodies. The subsequent kidney repair phase is characterized by a metabolic shift toward glycolysis, along with decreased fatty acid β-oxidation and continued disturbances in amino acid metabolism. Furthermore, the impact of metabolism dysfunction on renal cell injury, regeneration, and the development of renal fibrosis is analyzed. Finally, we discuss the potential therapeutic strategies by targeting renal metabolic regulation to ameliorate kidney injury and fibrosis and promote kidney repair.
Collapse
Affiliation(s)
- Wenbin Tang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
9
|
Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 2024; 105:132-149. [PMID: 38069998 DOI: 10.1016/j.kint.2023.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 01/07/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Yi Ding
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Carlos J Rosado
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Claus Haase
- Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Yangsong Xu
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Mater Research Institute, the University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | | | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Caetano-Pinto P, Stahl SH. Renal Organic Anion Transporters 1 and 3 In Vitro: Gone but Not Forgotten. Int J Mol Sci 2023; 24:15419. [PMID: 37895098 PMCID: PMC10607849 DOI: 10.3390/ijms242015419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Organic anion transporters 1 and 3 (OAT1 and OAT3) play a crucial role in kidney function by regulating the secretion of multiple renally cleared small molecules and toxic metabolic by-products. Assessing the activity of these transporters is essential for drug development purposes as they can significantly impact drug disposition and safety. OAT1 and OAT3 are amongst the most abundant drug transporters expressed in human renal proximal tubules. However, their expression is lost when cells are isolated and cultured in vitro, which is a persistent issue across all human and animal renal proximal tubule cell models, including primary cells and cell lines. Although it is well known that the overall expression of drug transporters is affected in vitro, the underlying reasons for the loss of OAT1 and OAT3 are still not fully understood. Nonetheless, research into the regulatory mechanisms of these transporters has provided insights into the molecular pathways underlying their expression and activity. In this review, we explore the regulatory mechanisms that govern the expression and activity of OAT1 and OAT3 and investigate the physiological changes that proximal tubule cells undergo and that potentially result in the loss of these transporters. A better understanding of the regulation of these transporters could aid in the development of strategies, such as introducing microfluidic conditions or epigenetic modification inhibitors, to improve their expression and activity in vitro and to create more physiologically relevant models. Consequently, this will enable more accurate assessment for drug development and safety applications.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Simone H. Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 310 Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK;
| |
Collapse
|
11
|
Mitrofanova A, Merscher S, Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol 2023; 19:629-645. [PMID: 37500941 DOI: 10.1038/s41581-023-00741-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Chronic kidney disease (CKD) is a global health problem with rising incidence and prevalence. Among several pathogenetic mechanisms responsible for disease progression, lipid accumulation in the kidney parenchyma might drive inflammation and fibrosis, as has been described in fatty liver diseases. Lipids and their metabolites have several important structural and functional roles, as they are constituents of cell and organelle membranes, serve as signalling molecules and are used for energy production. However, although lipids can be stored in lipid droplets to maintain lipid homeostasis, lipid accumulation can become pathogenic. Understanding the mechanisms linking kidney parenchymal lipid accumulation to CKD of metabolic or non-metabolic origin is challenging, owing to the tremendous variety of lipid species and their functional diversity across different parenchymal cells. Nonetheless, multiple research reports have begun to emphasize the effect of dysregulated kidney lipid metabolism in CKD progression. For example, altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury. Newly developed lipid-targeting agents are being tested in clinical trials in CKD, raising expectations for further therapeutic development in this field.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|