1
|
Jiang L, Li W, Liu X, Li C, Sun Z, Wu F, Ge S. Integrative techniques for insect behavior analysis using micro-CT and Blender. INSECT SCIENCE 2024. [PMID: 39415497 DOI: 10.1111/1744-7917.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
In this paper, we provide an approach that can simulate the behavior of insects, and the aggressive behavior of fruit flies is shown as an example. The specific workflow is as follows. (1) We obtained high-speed camera video of the fly's aggressive behavior. (2) Based on the high-speed camera video, we generated the key action diagrams for each movement. (3, 4) We used micro-computed tomography imaging to segment the leg exoskeleton models using Amira 6.0. (5) With the Blender software, we optimized the OBJ model. (6) We gave motion properties to the 3-dimensional biomechanical model in Blender. (7) Based on high-speed camera videos and the key action diagrams, we generated a 4-dimensional precision adult Drosophila melanogaster biomechanical model. Our study provides a new approach to study rapid locomotion in insects. In addition, our study provides a new idea for establishment of a 4D database, the design and fabrication of bionic multipedal robots, and the linking of nerve signaling and muscle stretching processes.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaokun Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congqiao Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zonghui Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengming Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siqin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Ma WR, Liu L, Wang G, Bai JL, Hua BZ. Ultrastructure of the larval rectum of the scorpionfly Panorpa liui (Mecoptera: Panorpidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 82:101383. [PMID: 39243702 DOI: 10.1016/j.asd.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The rectum is an important part of the alimentary canal responsible for ion and water reabsorption of insects. However, it has rarely been studied in the larvae of Panorpidae, the largest family in Mecoptera. Here, we investigated the ultrastructure of larval rectum of the scorpionfly Panorpa liui Hua, 1997 using light and transmission electron microscopy. The rectum comprises tracheal muscular layers, connective tissue, non-cellular basal lamina, junctional cells, rectal epithelium, cuticle with irregular outlines, and a central lumen. The rectal epithelium is infolded to form six longitudinal rectal folds, which are distinct from rectal pads or papillae. In each rectal fold, the apical and basal plasma membranes of epithelial cells are infolded and the lateral plasma membranes form septate and scalariform junctions. The well-developed rectal folds are postulated to be closely associated with reabsorption of ions and water in the larvae. The associations of rectal folds with larval behaviors are briefly discussed in Mecoptera.
Collapse
Affiliation(s)
- Wan-Ruo Ma
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ge Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Li Bai
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Windfelder AG, Steinbart J, Graser L, Scherberich J, Krombach GA, Vilcinskas A. An enteric ultrastructural surface atlas of the model insect Manducasexta. iScience 2024; 27:109410. [PMID: 38558941 PMCID: PMC10981077 DOI: 10.1016/j.isci.2024.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
The tobacco hornworm is a laboratory model that is particularly suitable for analyzing gut inflammation, but a physiological reference standard is currently unavailable. Here, we present a surface atlas of the healthy hornworm gut generated by scanning electron microscopy and nano-computed tomography. This comprehensive overview of the gut surface reveals morphological differences between the anterior, middle, and posterior midgut, allowing the screening of aberrant gut phenotypes while accommodating normal physiological variations. We estimated a total resorptive midgut surface of 0.42 m2 for L5d6 larvae, revealing its remarkable size. Our data will support allometric scaling and dose conversion from Manduca sexta to mammals in preclinical research, embracing the 3R principles. We also observed non-uniform gut colonization by enterococci, characterized by dense biofilms in the pyloric cone and downstream of the pylorus associated with pore and spine structures in the hindgut intima, indicating a putative immunosurveillance function in the lepidopteran hindgut.
Collapse
Affiliation(s)
- Anton G. Windfelder
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Experimental Radiology, Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Steinbart
- Experimental Radiology, Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Leonie Graser
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Jan Scherberich
- Experimental Radiology, Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Gabriele A. Krombach
- Experimental Radiology, Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Department of Applied Entomology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Vommaro ML, Donato S, Caputo S, Agostino RG, Montali A, Tettamanti G, Giglio A. Anatomical changes of Tenebrio molitor and Tribolium castaneum during complete metamorphosis. Cell Tissue Res 2024; 396:19-40. [PMID: 38409390 PMCID: PMC10997553 DOI: 10.1007/s00441-024-03877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
In holometabolous insects, extensive reorganisation of tissues and cells occurs at the pupal stage. The remodelling of the external exoskeleton and internal organs that intervenes during metamorphosis has been traditionally studied in many insect species based on histological or ultrastructural methods. This study demonstrates the use of synchrotron X-ray phase-contrast micro-computed tomography as a powerful, non-destructive tool for in situ morphological observation of anatomical structures at the pupal stage in two Tenebrionid beetles, i.e. Tribolium castaneum and Tenebrio molitor, known as important pests, as well as emerging and promising models in experimental biology. Virtual sections and three-dimensional reconstructions were performed on both males and females at early, intermediate, and late pupal stage. The dataset allowed us to observe the remodelling of the gut and nervous system as well as the shaping of the female and male reproductive system at different pupal ages in both mealworm and red flour beetles. Moreover, we observed that the timing and duration pattern of organ development varied between the species analysed, likely related to the species-specific adaptations of the pre-imaginal stages to environmental conditions, which ultimately affect their life cycle. This research provides new knowledge on the morphological modifications that occur during the pupal stage of holometabolous insects and provides a baseline set of information on beetle metamorphosis that may support future research in forensics, physiology, and ecology as well as an image atlas for educational purposes.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Sandro Donato
- University of Calabria, Department of Physics and STAR research infrastructure, Rende, Italy
- Istituto Nazionale di Fisica Nucleare, Division of Frascati, Rome, Italy
| | - Simone Caputo
- University of Calabria, Department of Environmental Engineering, Rende, Italy
| | - Raffaele G Agostino
- University of Calabria, Department of Physics and STAR research infrastructure, Rende, Italy
| | - Aurora Montali
- University of Insubria, Department of Biotechnology and Life Sciences, Varese, Italy
| | - Gianluca Tettamanti
- University of Insubria, Department of Biotechnology and Life Sciences, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
5
|
Koshkina O, Rheinberger T, Flocke V, Windfelder A, Bouvain P, Hamelmann NM, Paulusse JMJ, Gojzewski H, Flögel U, Wurm FR. Biodegradable polyphosphoester micelles act as both background-free 31P magnetic resonance imaging agents and drug nanocarriers. Nat Commun 2023; 14:4351. [PMID: 37468502 DOI: 10.1038/s41467-023-40089-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
In vivo monitoring of polymers is crucial for drug delivery and tissue regeneration. Magnetic resonance imaging (MRI) is a whole-body imaging technique, and heteronuclear MRI allows quantitative imaging. However, MRI agents can result in environmental pollution and organ accumulation. To address this, we introduce biocompatible and biodegradable polyphosphoesters, as MRI-traceable polymers using the 31P centers in the polymer backbone. We overcome challenges in 31P MRI, including background interference and low sensitivity, by modifying the molecular environment of 31P, assembling polymers into colloids, and tailoring the polymers' microstructure to adjust MRI-relaxation times. Specifically, gradient-type polyphosphonate-copolymers demonstrate improved MRI-relaxation times compared to homo- and block copolymers, making them suitable for imaging. We validate background-free imaging and biodegradation in vivo using Manduca sexta. Furthermore, encapsulating the potent drug PROTAC allows using these amphiphilic copolymers to simultaneously deliver drugs, enabling theranostics. This first report paves the way for polyphosphoesters as background-free MRI-traceable polymers for theranostic applications.
Collapse
Affiliation(s)
- Olga Koshkina
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Timo Rheinberger
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Vera Flocke
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany
| | - Anton Windfelder
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University, Giessen, Germany
| | - Pascal Bouvain
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany
| | - Naomi M Hamelmann
- Biomolecular Nanotechnology Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Jos M J Paulusse
- Biomolecular Nanotechnology Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ulrich Flögel
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|