1
|
Goldman OV, DeFoe AE, Qi Y, Jiao Y, Weng SC, Houri-Zeevi L, Lakhiani P, Morita T, Razzauti J, Rosas-Villegas A, Tsitohay YN, Walker MM, Hopkins BR, Mosquito Cell Atlas Consortium, Akbari OS, Duvall LB, White-Cooper H, Sorrells TR, Sharma R, Li H, Vosshall LB, Shai N. Mosquito Cell Atlas: A single-nucleus transcriptomic atlas of the adult Aedes aegypti mosquito. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.639765. [PMID: 40060408 PMCID: PMC11888250 DOI: 10.1101/2025.02.25.639765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The female mosquito's remarkable ability to hunt humans and transmit pathogens relies on her unique biology. Here, we present the Mosquito Cell Atlas (MCA), a comprehensive single-nucleus RNA sequencing dataset of more than 367,000 nuclei from 19 dissected tissues of adult female and male Aedes aegypti, providing cellular-level resolution of mosquito biology. We identify novel cell types and expand our understanding of sensory neuron organization of chemoreceptors to all sensory tissues. Our analysis uncovers male-specific cells and sexually dimorphic gene expression in the antenna and brain. In female mosquitoes, we find that glial cells in the brain, rather than neurons, undergo the most extensive transcriptional changes following blood feeding. Our findings provide insights into the cellular basis of mosquito behavior and sexual dimorphism. The MCA aims to serve as a resource for the vector biology community, enabling systematic investigation of cell-type specific expression across all mosquito tissues.
Collapse
Affiliation(s)
- Olivia V. Goldman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Alexandra E. DeFoe
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leah Houri-Zeevi
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Priyanka Lakhiani
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Jacopo Razzauti
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Price Family Center for the Social Brain, The Rockefeller University, New York, NY 10065, USA
| | - Adriana Rosas-Villegas
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Yael N. Tsitohay
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Madison M. Walker
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Ben R. Hopkins
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | | | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura B. Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Trevor R. Sorrells
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, New Haven, CT 06510, USA
| | - Roshan Sharma
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Single-cell Analytics Innovation Lab, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leslie B. Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Nadav Shai
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| |
Collapse
|
2
|
Morita T, Lyn NG, von Heynitz RK, Goldman OV, Sorrells TR, DeGennaro M, Matthews BJ, Houri-Zeevi L, Vosshall LB. Cross-modal sensory compensation increases mosquito attraction to humans. SCIENCE ADVANCES 2025; 11:eadn5758. [PMID: 39742477 DOI: 10.1126/sciadv.adn5758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Sensory compensation occurs when loss of one sense leads to enhanced perception by another sense. We have identified a previously undescribed mechanism of sensory compensation in female Aedes aegypti mosquitoes. Odorant receptor co-receptor (Orco) mutants show enhanced attraction to human skin temperature and increased heat-evoked neuronal activity in foreleg sensory neurons. Ir140, a foreleg-enriched member of the ionotropic receptor (IR) superfamily of sensory receptors, is up-regulated in Orco mutant legs. Ir140, Orco double mutants do not show the enhanced heat seeking seen in Orco single mutants, suggesting that up-regulation of Ir140 in the foreleg is a key mechanism underlying sensory compensation in Orco mutants. Because Orco expression is sparse in legs, this sensory compensation requires an indirect, long-range mechanism. Our findings highlight how female Aedes aegypti mosquitoes, despite suffering olfactory sensory loss, maintain the overall effectiveness of their host-seeking behavior by up-regulating attraction to human skin temperature, further enhancing their status as the most dangerous predator of humans.
Collapse
Affiliation(s)
- Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Nia G Lyn
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Ricarda K von Heynitz
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Olivia V Goldman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Trevor R Sorrells
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Matthew DeGennaro
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Leah Houri-Zeevi
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
| |
Collapse
|
3
|
Sadanandappa MK, Bosco G. Olfactory inputs regulate Drosophila melanogaster oogenesis. J Exp Biol 2024; 227:jeb247234. [PMID: 39660407 DOI: 10.1242/jeb.247234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Drosophila female germline development and maintenance require both local stem cell niche signaling and systemic regulation. Here, we show the indispensable function of the Drosophila melanogaster olfactory circuit in normal oogenesis and fecundity. Lack of olfactory inputs during development causes a reduction in germline stem cells. Although germline stem cells proliferate normally, the germline cysts undergo caspase-mediated apoptosis, leading to decreased follicle production and egg-laying in flies with defective olfaction. Strikingly, activation of olfactory circuits is sufficient to boost egg production, demonstrating that chemosensory-activated brain-derived inputs promote gamete development. Given the energy demands of oogenesis and its direct consequence on fitness, we propose that olfactory-stimulated systemic regulation evolved tightly with downstream diet-responsive pathways to control germline physiology in response to nutritional status. Additionally, these findings raise the possibility that sensory-mediated stem cell maintenance is a generalizable mechanism spanning a myriad of neuronal circuits, systems and species.
Collapse
Affiliation(s)
- Madhumala K Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
4
|
David OG, Arce AV, Costa-da-Silva AL, Bellantuono AJ, DeGennaro M. Fertility decline in Aedes aegypti (Diptera: Culicidae) mosquitoes is associated with reduced maternal transcript deposition and does not depend on female age. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1064-1070. [PMID: 38757780 PMCID: PMC11239790 DOI: 10.1093/jme/tjae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Female mosquitoes undergo multiple rounds of reproduction known as gonotrophic cycles (GC). A gonotrophic cycle spans the period from blood meal intake to egg laying. Nutrients from vertebrate host blood are necessary for completing egg development. During oogenesis, a female prepackages mRNA into her oocytes, and these maternal transcripts drive the first 2 h of embryonic development prior to zygotic genome activation. In this study, we profiled transcriptional changes in 1-2 h of Aedes aegypti (Diptera: Culicidae) embryos across 2 GC. We found that homeotic genes which are regulators of embryogenesis are downregulated in embryos from the second gonotrophic cycle. Interestingly, embryos produced by Ae. aegypti females progressively reduced their ability to hatch as the number of GC increased. We show that this fertility decline is due to increased reproductive output and not the mosquitoes' age. Moreover, we found a similar decline in fertility and fecundity across 3 GC in Aedes albopictus. Our results are useful for predicting mosquito population dynamics to inform vector control efforts.
Collapse
Affiliation(s)
- Olayinka G David
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andrea V Arce
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andre Luis Costa-da-Silva
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Wang JJ, Ma C, Yue Y, Yang J, Chen LX, Wang YT, Zhao CC, Gao X, Chen HS, Ma WH, Zhou Z. Identification of candidate chemosensory genes in Bactrocera cucurbitae based on antennal transcriptome analysis. Front Physiol 2024; 15:1354530. [PMID: 38440345 PMCID: PMC10910661 DOI: 10.3389/fphys.2024.1354530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024] Open
Abstract
The melon fly, Bactrocera cucurbitae (Coquillett) (Tephritidae: Diptera), is an invasive pest that poses a significant threat to agriculture in Africa and other regions. Flies are known to use their olfactory systems to recognise environmental chemical cues. However, the molecular components of the chemosensory system of B. cucurbitae are poorly characterised. To address this knowledge gap, we have used next-generation sequencing to analyse the antenna transcriptomes of sexually immature B. cucurbitae adults. The results have identified 160 potential chemosensory genes, including 35 odourant-binding proteins (OBPs), one chemosensory protein (CSP), three sensory neuron membrane proteins (SNMPs), 70 odourant receptors (ORs), 30 ionotropic receptors (IRs), and 21 gustatory receptors (GRs). Quantitative real-time polymerase chain reaction quantitative polymerase chain reaction was used to validate the results by assessing the expression profiles of 25 ORs and 15 OBPs. Notably, high expression levels for BcucOBP5/9/10/18/21/23/26 were observed in both the female and male antennae. Furthermore, BcucOROrco/6/7/9/13/15/25/27/28/42/62 exhibited biased expression in the male antennae, whereas BcucOR55 showed biased expression in the female antennae. This comprehensive investigation provides valuable insights into insect olfaction at the molecular level and will, thus, help to facilitate the development of enhanced pest management strategies in the future.
Collapse
Affiliation(s)
- Jing Jing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yang Yue
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Li Xiang Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yi Ting Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | | | - Xuyuan Gao
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hong Song Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|