1
|
Filipová M, Tavares MR, Hovorková M, Heine V, Nekvasilová P, Křen V, Etrych T, Chytil P, Bojarová P. Selective Glycopolymer Inhibitors of Galectin-3: Supportive Anti-Cancer Agents Protecting Monocytes and Preserving Interferon-Gamma Function. Int J Nanomedicine 2025; 20:6591-6609. [PMID: 40438186 PMCID: PMC12118576 DOI: 10.2147/ijn.s503381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/21/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction The immunosuppressive roles of galectin-3 (Gal-3) in carcinogenesis make this lectin an attractive target for pharmacological inhibition in immunotherapy. Although current clinical immunotherapies appear promising in the treatment of solid tumors, their efficacy is significantly weakened by the hostile immunosuppressive tumor microenvironment (TME). Gal-3, a prominent TME modulator, efficiently subverts the elimination of cancer, either directly by inducing apoptosis of immune cells or indirectly by binding essential effector molecules, such as interferon-gamma (IFNγ). Methods N-(2-Hydroxypropyl)methacrylamide (HPMA)-based glycopolymers bearing poly-N-acetyllactosamine-derived tetrasaccharide ligands of Gal-3 were designed, synthesized, and characterized using high-performance liquid chromatography, dynamic light scattering, UV-Vis spectrophotometry, gel permeation chromatography, nuclear magnetic resonance, high-resolution mass spectrometry and CCK-8 assay for evaluation of glycopolymer non-toxicity. Pro-immunogenic effects of purified glycopolymers were tested by apoptotic assay using flow cytometry, competitive ELISA, and in vitro cell-free INFγ-based assay. Results All tested glycopolymers completely inhibited Gal-3-induced apoptosis of monocytes/macrophages, of which the M1 subtype is responsible for eliminating cancer cells during immunotherapy. Moreover, the glycopolymers suppressed Gal-3-induced capture of glycosylated IFNγ by competitive inhibition to Gal-3 carbohydrate recognition domain (CRD), which enables further inherent biological activities of this effector, such as differentiation of monocytes into M1 macrophages and repolarization of M2-macrophages to the M1 state. Conclusion The prepared glycopolymers are promising inhibitors of Gal-3 and may serve as important supportive anti-cancer nanosystems enabling the infiltration of proinflammatory macrophages and the reprogramming of unwanted M2 macrophages into the M1 subtype.
Collapse
Affiliation(s)
- Marcela Filipová
- Department of Biological Models, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marina Rodrigues Tavares
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Viktoria Heine
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavlína Nekvasilová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Etrych
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Chytil
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| |
Collapse
|
2
|
Blidner AG, Bach CA, García PA, Merlo JP, Cagnoni AJ, Bannoud N, Manselle Cocco MN, Pérez Sáez JM, Pinto NA, Torres NI, Sarrias L, Dalotto-Moreno T, Gatto SG, Morales RM, Giribaldi ML, Stupirski JC, Cerliani JP, Bellis SL, Salatino M, Troncoso MF, Mariño KV, Abba MC, Croci DO, Rabinovich GA. Glycosylation-driven programs coordinate immunoregulatory and pro-angiogenic functions of myeloid-derived suppressor cells. Immunity 2025:S1074-7613(25)00190-6. [PMID: 40381622 DOI: 10.1016/j.immuni.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2024] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor progression by suppressing antitumor immunity and inducing angiogenesis; however, the mechanisms linking these processes remain uncertain. Here, we identified a glycosylation-dependent program driven by galectin-1 (GAL1) that imparted both immunoregulatory and pro-angiogenic functions to MDSCs through shared receptor signaling pathways. GAL1 expression was associated with enhanced MDSC phenotypes and poor prognosis in diverse human cancers. Analysis of monocytic and polymorphonuclear MDSCs from tumor-bearing mice revealed niche-specific glycan signatures that selectively regulated GAL1 binding. Through glycosylation-dependent interactions with the CD18-CD11b-CD177 receptor complex and STAT3 signaling, GAL1 simultaneously orchestrated immunosuppressive and pro-angiogenic programs in MDSCs, driving tumor growth in vivo. Myeloid-specific deletion of β-galactoside α(2,6)-sialyltransferase 1, which prevented α(2,6)-linked sialic acid incorporation, enhanced GAL1-driven regulatory circuits and accelerated tumor progression, effects that were mitigated by GAL1-neutralizing antibodies. Thus, targeting GAL1-glycan interactions may offer opportunities to reprogram MDSCs and enhance the efficacy of immunotherapeutic and anti-angiogenic strategies.
Collapse
Affiliation(s)
- Ada G Blidner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina.
| | - Camila A Bach
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Pablo A García
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina
| | - Joaquín P Merlo
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), 1073 Ciudad de Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina
| | - Nadia Bannoud
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Montana N Manselle Cocco
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Nicolás A Pinto
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Nicolás I Torres
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Luciana Sarrias
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Ciudad de Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Sabrina G Gatto
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Rosa M Morales
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - M Laura Giribaldi
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan C Stupirski
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan P Cerliani
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Mariana Salatino
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Ciudad de Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), 1073 Ciudad de Buenos Aires, Argentina
| | - Martín C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Diego O Croci
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina; Universidad de San Andrés, Victoria, Provincia de Buenos Aires 1644, Argentina.
| |
Collapse
|
3
|
Chen W, Cheng Q, Li N, Gu K, Zhao H, Na H. The role of glycan-lectin interactions in the tumor microenvironment: immunosuppression regulators of colorectal cancer. Am J Cancer Res 2025; 15:1347-1383. [PMID: 40371166 PMCID: PMC12070101 DOI: 10.62347/wbjl4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 05/16/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumour and a serious global health issue. Glycosylation, a type of posttranslational modification, has been extensively studied in relation to cancer growth and metastasis. Aberrant glycosylation alters how the immune system in the microenvironment perceives the tumour and drives immune suppression through glycan-binding receptors. Interestingly, specific glycan signatures can be regarded as a new pattern of immune checkpoints. Lectins are a group of proteins that exhibit high affinity for glycosylation structures. Lectins and their ligands are found on endothelial cells (ECs), immune cells and tumour cells and play important roles in the tumour microenvironment (TME). In CRC, glycan-lectin interactions can accelerate immune evasion promoting the differentiation of tumour-associated M2 macrophages, altering T cell, dendritic cell (DC), natural killer (NK) cell, and regulatory T (Treg) cell activity to modify the functions of antigen-presenting cells functions. Here, we review our current knowledge on how glycan-lectin interactions affect immune-suppressive circuits in the TME and discuss their roles in the development of more effective immunotherapies for CRC.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of General Surgery, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Quanzhi Cheng
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Na Li
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Kaiming Gu
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Hongmei Zhao
- Department of Infection Management, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Heya Na
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| |
Collapse
|
4
|
Díaz del Arco C, Estrada Muñoz L, Cerón Nieto MDLÁ, Molina Roldán E, Fernández Aceñero MJ, García Gómez de las Heras S. Prognostic Influence of Galectin-1 in Gastric Adenocarcinoma. Biomedicines 2024; 12:1508. [PMID: 39062081 PMCID: PMC11275144 DOI: 10.3390/biomedicines12071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Galectin-1 (Gal-1), a member of the human lectin family, has garnered attention for its association with aggressive behavior in human tumors, prompting research into the development of targeted drugs. This study aims to assess the staining pattern and prognostic significance of Gal-1 immunohistochemical expression in a homogeneous cohort of Western patients with gastric cancer (GC). A total of 149 cases were included and tissue microarrays were constructed. Stromal Gal-1 expression was observed to some extent in most tumors, displaying a cytoplasmic pattern. Cases with stromal Gal-1 overexpression showed significantly more necrosis, lymphovascular invasion, advanced pTNM stages, recurrences, and cancer-related deaths. Epithelial Gal-1 expression was present in 63.8% of the cases, primarily exhibiting a cytoplasmic pattern, and its overexpression was significantly associated with lymphovascular invasion, peritumoral lymphocytic infiltration, and tumor-related death. Kaplan/Meier curves for cancer-specific survival (CSS) revealed a significantly worse prognosis for patients with tumors exhibiting stromal or epithelial Gal-1 overexpression. Furthermore, stromal Gal-1 expression stratified stage III patients into distinct prognostic subgroups. In a multivariable analysis, increased stromal Gal-1 expression emerged as an independent prognostic factor for CSS. These findings underscore the prognostic relevance of Gal-1 and suggest its potential as a target for drug development in Western patients with GC.
Collapse
Affiliation(s)
- Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lourdes Estrada Muñoz
- Department of Pathology, Rey Juan Carlos Hospital, 28933 Móstoles, Spain;
- Department of Basic Medical Sciences, School of Medicine, Rey Juan Carlos University, 28933 Móstoles, Spain;
| | - María de los Ángeles Cerón Nieto
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | |
Collapse
|
5
|
Schattner M, Psaila B, Rabinovich GA. Shaping hematopoietic cell ecosystems through galectin-glycan interactions. Semin Immunol 2024; 74-75:101889. [PMID: 39405834 DOI: 10.1016/j.smim.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/18/2024]
Abstract
Hematopoiesis- the formation of blood cell components- continually replenishes the blood system during embryonic development and postnatal lifespans. This coordinated process requires the synchronized action of a broad range of cell surface associated proteins and soluble mediators, including growth factors, cytokines and lectins. Collectively, these mediators control cellular communication, signalling, commitment, proliferation, survival and differentiation. Here we discuss the role of galectins - an evolutionarily conserved family of glycan-binding proteins - in the establishment and dynamic remodelling of hematopoietic niches. We focus on the contribution of galectins to B and T lymphocyte development and selection, as well as studies highlighting the role of these proteins in myelopoiesis, with particular emphasis on erythropoiesis and megakaryopoiesis. Finally, we also highlight recent findings suggesting the role of galectin-1, a prototype member of this protein family, as a key pathogenic factor and therapeutic target in myelofibrosis. Through extracellular or intracellular mechanisms, galectins can influence the fate and function of distinct hematopoietic progenitors and fine-tune the final repertoire of blood cells, with critical implications in a wide range of physiologically vital processes including innate and adaptive immunity, immune tolerance programs, tissue repair, regeneration, angiogenesis, inflammation, coagulation and oxygen delivery. Additionally, positive or negative regulation of galectin-driven circuits may contribute to a broad range of blood cell disorders.
Collapse
Affiliation(s)
- Mirta Schattner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Laboratorio de Trombosis Experimental e Inmunobiología de la Inflamación, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Ciudad de Buenos Aires 1425, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina.
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine and Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina.
| |
Collapse
|
6
|
Wang HC, Xia R, Chang WH, Hsu SW, Wu CT, Chen CH, Shih TC. Improving cancer immunotherapy in prostate cancer by modulating T cell function through targeting the galectin-1. Front Immunol 2024; 15:1372956. [PMID: 38953033 PMCID: PMC11215701 DOI: 10.3389/fimmu.2024.1372956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Our study aimed to elucidate the role of Galectin-1 (Gal-1) role in the immunosuppressive tumor microenvironment (TME) of prostate cancer (PCa). Our previous findings demonstrated a correlation between elevated Gal-1 expression and advanced PCa stages. In this study, we also observed that Gal-1 is expressed around the tumor stroma and its expression level is associated with PCa progression. We identified that Gal-1 could be secreted by PCa cells, and secreted Gal-1 has the potential to induce T cell apoptosis. Gal-1 knockdown or inhibition of Gal-1 function by LLS30 suppresses T cell apoptosis resulting in increased intratumoral T cell infiltration. Importantly, LLS30 treatment significantly improved the antitumor efficacy of anti-PD-1 in vivo. Mechanistically, LLS30 binds to the carbohydrate recognition domain (CRD) of Gal-1, disrupting its binding to CD45 leading to the suppression of T cell apoptosis. In addition, RNA-seq analysis revealed a novel mechanism of action for LLS30, linking its tumor-intrinsic oncogenic effects to anti-tumor immunity. These findings suggested that tumor-derived Gal-1 contributes to the immunosuppressive TME in PCa by inducing apoptosis in effector T cells. Targeting Gal-1 with LLS30 may offer a strategy to enhance anti-tumor immunity and improve immunotherapy.
Collapse
Affiliation(s)
- Hsiao-Chi Wang
- Department of Research and Development, Kibio Inc., Houston, TX, United States
| | - Roger Xia
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Wen-Hsin Chang
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Ssu-Wei Hsu
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Ching-Hsien Chen
- Division of Nephrology, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Tsung-Chieh Shih
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Torres NI, Baudou FG, Scheidegger MA, Dalotto-Moreno T, Rabinovich GA. Do galectins serve as soluble ligands for immune checkpoint receptors? J Immunother Cancer 2024; 12:e008984. [PMID: 38599662 PMCID: PMC11015282 DOI: 10.1136/jitc-2024-008984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Nicolas I Torres
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Instituto de Tecnología, Universidad Argentina de la Empresa, Ciudad de Buenos Aires, Argentina
| | - Federico G Baudou
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Provincia de Buenos Aires, Argentina
| | - Marco A Scheidegger
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
8
|
Abudu O, Nguyen D, Millward I, Manning JE, Wahid M, Lightfoot A, Marcon F, Merard R, Margielewska-Davies S, Roberts K, Brown R, Powell-Brett S, Nicol SM, Zayou F, Croft WD, Pearce H, Moss P, Iqbal AJ, McGettrick HM. Interplay in galectin expression predicts patient outcomes in a spatially restricted manner in PDAC. Biomed Pharmacother 2024; 172:116283. [PMID: 38377735 DOI: 10.1016/j.biopha.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Galectins (Gal's) are a family of carbohydrate-binding proteins that are known to support the tumour microenvironment through their immunosuppressive activity and ability to promote metastasis. As such they are attractive therapeutic targets, but little is known about the cellular expression pattern of galectins within the tumour and its neighbouring stromal microenvironment. Here we investigated the cellular expression pattern of Gals within pancreatic ductal adenocarcinoma (PDAC). METHODS Galectin gene and protein expression were analysed by scRNAseq (n=4) and immunofluorescence imaging (n=19) in fibroblasts and epithelial cells of pancreatic biopsies from PDAC patients. Galectin surface expression was also assessed on tumour adjacent normal fibroblasts and cancer associated primary fibroblasts from PDAC biopsies using flow cytometry. RESULTS scRNAseq revealed higher Gal-1 expression in fibroblasts and higher Gal-3 and -4 expression in epithelial cells. Both podoplanin (PDPN+, stromal/fibroblast) cells and EpCAM+ epithelial cells expressed Gal-1 protein, with highest expression seen in the stromal compartment. By contrast, significantly more Gal-3 and -4 protein was expressed in ductal cells expressing either EpCAM or PDPN, when compared to the stroma. Ductal Gal-4 cellular expression negatively correlated with ductal Gal-1, but not Gal-3 expression. Higher ductal cellular expression of Gal-1 correlated with smaller tumour size and better patient survival. CONCLUSIONS In summary, the intricate interplay and cell-specific expression patterns of galectins within the PDAC tissue, particularly the inverse correlation between Gal-1 and Gal-4 in ducts and its significant association with patient survival, highlights the complex molecular landscape underlying PDAC and provides valuable insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Oladimeji Abudu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Duy Nguyen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Isabel Millward
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Julia E Manning
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Mussarat Wahid
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Abbey Lightfoot
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Francesca Marcon
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Reena Merard
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | | | - Keith Roberts
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Rachel Brown
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Sarah Powell-Brett
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Samantha M Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Fouzia Zayou
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Wayne D Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
9
|
Yaylim İ, Aru M, Farooqi AA, Hakan MT, Buttari B, Arese M, Saso L. Regulation of Nrf2/Keap1 signaling pathway in cancer drug resistance by galectin-1: cellular and molecular implications. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:8. [PMID: 38434765 PMCID: PMC10905161 DOI: 10.20517/cdr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Oxidative stress is characterized by the deregulation of the redox state in the cells, which plays a role in the initiation of various types of cancers. The activity of galectin-1 (Gal-1) depends on the cell redox state and the redox state of the microenvironment. Gal-1 expression has been related to many different tumor types, as it plays important roles in several processes involved in cancer progression, such as apoptosis, cell migration, adhesion, and immune response. The erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling pathway is a crucial mechanism involved in both cell survival and cell defense against oxidative stress. In this review, we delve into the cellular and molecular roles played by Gal-1 in the context of oxidative stress onset in cancer cells, particularly focusing on its involvement in activating the Nrf2/Keap1 signaling pathway. The emerging evidence concerning the anti-apoptotic effect of Gal-1, together with its ability to sustain the activation of the Nrf2 pathway in counteracting oxidative stress, supports the role of Gal-1 in the promotion of tumor cells proliferation, immuno-suppression, and anti-tumor drug resistance, thus highlighting that the inhibition of Gal-1 emerges as a potential strategy for the restraint and regression of tumor progression. Overall, a deeper understanding of the multi-functionality and disease-specific expression profiling of Gal-1 will be crucial for the design and development of novel Gal-1 inhibitors as anticancer agents. Excitingly, although it is still understudied, the ever-growing knowledge of the sophisticated interplay between Gal-1 and Nrf2/Keap1 will enable researchers to gain valuable insights into the underlying causes of carcinogenesis and metastasis.
Collapse
Affiliation(s)
- İlhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Melek Aru
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
- Department of Medical Education, Istinye University Faculty of Medicine, Istanbul 34396, Turkiye
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, Rome 00161, Italy
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, Rome 00185, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome 00185, Italy
| |
Collapse
|
10
|
Chung H, Gyu-mi P, Na YR, Lee YS, Choi H, Seok SH. Comprehensive characterization of early-programmed tumor microenvironment by tumor-associated macrophages reveals galectin-1 as an immune modulatory target in breast cancer. Theranostics 2024; 14:843-860. [PMID: 38169569 PMCID: PMC10758049 DOI: 10.7150/thno.88917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Background: In recent years, there has been considerable interest in the therapeutic targeting of tumor-associated macrophages (TAMs) to modulate the tumor microenvironment (TME), resulting in antitumoral phenotypes. However, key mediators suitable for TAM-mediated remodeling of the TME remain poorly understood. Methods: In this study, we used single-cell RNA sequencing analyses to analyze the landscape of the TME modulated by TAMs in terms of a protumor microenvironment during early tumor development. Results: Our data revealed that the depletion of TAMs leads to a decreased epithelial-to-mesenchymal transition (EMT) signature in cancer cells and a distinct transcriptional state characterized by CD8+ T cell activation. Moreover, notable alterations in gene expression were observed upon the depletion of TAMs, identifying Galectin-1 (Gal-1) as a crucial molecular factor responsible for the observed effect. Gal-1 inhibition reversed immune suppression via the reinvigoration of CD8+ T cells, impairing tumor growth and potentiating immune checkpoint inhibitors in breast tumor models. Conclusion: These results provide comprehensive insights into TAM-mediated early tumor microenvironments and reveal immune evasion mechanisms that can be targeted by Gal-1 to induce antitumor immune responses.
Collapse
Affiliation(s)
- Hyewon Chung
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
| | - Park Gyu-mi
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, South Korea
- Department of Biomedical Sciences and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, South Korea
- Department of Biomedical Sciences and Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|