1
|
Martin-Lopez E, Brennan B, Lefèvre M, Spence NJ, Han K, Greer CA. Laminar organization of the anterior olfactory nucleus-the interplay between neurogenesis timing and neuroblast migration. Front Neurosci 2025; 19:1546397. [PMID: 40370659 PMCID: PMC12075217 DOI: 10.3389/fnins.2025.1546397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/31/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction The anterior olfactory nucleus (AON) is a laminar structure embedded within the olfactory peduncle which serves as the conduit for connectivity between the olfactory bulb (OB) and the central processing centers of the brain. The largest portion of the AON is a ring of neurons and fibers that surround the core of the peduncle, the pars principalis (AONpP). The AONpP is further subdivided into an outer plexiform layer, or layer 1 (L1), that contains axons and dendrites, and an inner cell zone, or layer 2 (L2), formed by densely packed pyramidal cells. Relative to other regions of the olfactory system, the development of the AON remains poorly understood. Methods We performed injections of thymidine analogs in pregnant mice from E10 to E18 to determine the timeline of AON neurogenesis and used immunohistochemistry to study neuronal phenotypes both at adult and embryonic stages. To better understand migration and differentiation of the AON neurons, we labeled AON precursors using in utero electroporations with the piggyBac transposon into the rostral lateral ganglionic eminence, the embryonic source of AON neurons. Results Our analyses established that the earliest neurons targeted to the AON laminae arose at E10 with neurogenesis peaking at E13. In L1, we found a caudal-to-rostral neurogenic gradient not detected in L2. Quantification across the cardinal axes showed no gradients in L2 and a medial-to-lateral gradient for L1. Using immunohistochemistry, we found that AON neurons express the most common cortical markers Tbr1, Ctip2, NeuroD1, Sox5 and Cux1+2 at adult stages without laminar distinction. Tbr1 and NeuroD1 first appeared embryonically at E12, while Ctip2 and Sox5 were present at E13, following a dorsal-ventral pattern. Cux1+2 was not detected embryonically. Embryonically, our data on neuroblasts migration revealed that AON neuroblasts use a scaffold of radial glia to migrate to their final destinations in both L1 and L2 through a caudal-to-rostral migratory gradient. Conclusion For the first time, our data show a comprehensive timeline for the AON neurogenesis across the anatomical axes, and a detailed analysis on neuroblast migration in the mouse embryo. These data are crucial to understanding the embryonic formation and relationship of relay stations along the olfactory pathway.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Bowen Brennan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Marion Lefèvre
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Natalie J. Spence
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Kimberly Han
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Charles A. Greer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Machen B, Miller SN, Xin A, Lampert C, Assaf L, Tucker J, Pereira F, Loewinger G, Beas S. The encoding of interoceptive-based predictions by the paraventricular nucleus of the thalamus D2+ neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642469. [PMID: 40161660 PMCID: PMC11952474 DOI: 10.1101/2025.03.10.642469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding how the brain integrates internal physiological states with external sensory cues to guide behavior is a fundamental question in neuroscience. This process relies on interoceptive predictions-internal models that anticipate changes in the body's physiological state based on sensory inputs and prior experiences. Despite recent advances in identifying the neural substrates of interoceptive predictions, the precise neuronal circuits involved remain elusive. In our study, we demonstrate that Dopamine 2 Receptor (D2+) expressing neurons in the paraventricular nucleus of the thalamus (PVT) play key roles in interoception and interoceptive predictions. Specifically, these neurons are engaged in behaviors leading to physiologically relevant outcomes, with their activity highly dependent on the interoceptive state of the mice and the expected outcome. Furthermore, we show that chronic inhibition of PVT D2+ neurons impairs the long-term performance of interoceptive-guided motivated behavior. Collectively, our findings provide insights into the role of PVT D2+ neurons in learning and updating state-dependent predictions, by integrating past experiences with current physiological conditions to optimize goal-directed behavior.
Collapse
|
3
|
Palchaudhuri S, Lin BX, Osypenko D, Wu J, Kochubey O, Schneggenburger R. A posterior insula to lateral amygdala pathway transmits US-offset information with a limited role in fear learning. Cell Rep 2025; 44:115320. [PMID: 39954251 DOI: 10.1016/j.celrep.2025.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/21/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
During fear learning, associations between a sensory cue (conditioned stimulus, CS) and an aversive stimulus (unconditioned stimulus, US) are formed in specific brain circuits. The lateral amygdala (LA) is involved in CS-US integration; however, US pathways to the LA remain understudied. Here, we investigated whether the posterior insular cortex (pInsCx), a hub for aversive state signaling, transmits US information to the LA during fear learning. We find that the pInsCx makes a robust, glutamatergic projection specifically targeting the anterior LA. In vivo Ca2+ imaging reveals that neurons in the pInsCx and anterior LA display US-onset and US-offset responses; imaging combined with axon silencing shows that the pInsCx selectively transmits US-offset information to the anterior LA. Optogenetic silencing, however, does not show a role for US-driven activity in the anterior LA or its pInsCx afferents in fear memory formation. Thus, we describe a cortical projection that carries US-offset information to the amygdala with a limited role in fear learning.
Collapse
Affiliation(s)
- Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Bei-Xuan Lin
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Jinyun Wu
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Lu M, Zhang J, Zhang Q, Sun J, Zou D, Huang J, Liu W. The parasubthalamic nucleus: A novel eating center in the brain. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111250. [PMID: 39788409 DOI: 10.1016/j.pnpbp.2025.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Eating behavior stands as a fundamental determinant of animal survival and growth, intricately regulated by an amalgamation of internal and external stimuli. Coordinated movements of facial muscles and the mandible orchestrate prey capture and food processing, propelled by the allure of taste and rewarding food properties. Conversely, satiation, pain, aversion, negative emotion or perceived threats can precipitate the cessation or avoidance of eating activities. In recent years, the parasubthalamic nucleus (PSTN), located in the lateral hypothalamic area, has emerged as a focal point in feeding research. PSTN neurons assume pivotal roles within multiple feeding circuits, bridging central feeding centers with peripheral organs. They intricately modulate regulation of oral sensorimotor functions, hedonic feeding, appetite motivation and the processing of satiation and aversive signals, thereby orchestrating the initiation or termination of feeding behaviors. This review delves into the distinctive neuronal subpopulations within the PSTN and their associated neural networks, aiming to refine our comprehension of the neural underpinnings of feeding while also seeking to unearth more efficacious therapeutic avenues for feeding and eating disorders.
Collapse
Affiliation(s)
- Mingxuan Lu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jiayao Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Qi Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Jiyu Sun
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Danni Zou
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jinyin Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Weicai Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
5
|
Dunning JL, Lopez C, Krull C, Kreifeldt M, Angelo M, Shu L, Ramakrishnan C, Deisseroth K, Contet C. The parasubthalamic nucleus refeeding ensemble delays feeding initiation and hastens water drinking. Mol Psychiatry 2025; 30:37-49. [PMID: 38965421 PMCID: PMC11649566 DOI: 10.1038/s41380-024-02653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The parasubthalamic nucleus (PSTN) is activated by refeeding after food deprivation and several PSTN subpopulations have been shown to suppress feeding. However, no study to date directly addressed the role of PSTN neurons activated upon food access in the control of ensuing food consumption. Here we identify consumption latency as a sensitive behavioral indicator of PSTN activity, and show that, in hungry mice, the ensemble of refeeding-activated PSTN neurons drastically increases the latency to initiate refeeding with both familiar and a novel, familiar food, but does not control the amount of food consumed. In thirsty mice, this ensemble also delays sucrose consumption but accelerates water consumption, possibly reflecting anticipatory prandial thirst, with again no influence on the amount of fluid consumed. We next sought to identify which subpopulations of PSTN neurons might be driving these latency effects, using cell-type and pathway-specific chemogenetic manipulations. Our results suggest a prominent role of PSTN Tac1 neurons projecting to the central amygdala in the hindrance of feeding initiation. While PSTN Crh neurons also delay the latency of hungry mice to ingest familiar foods, they surprisingly promote the consumption of novel, palatable substances. Furthermore, PSTN Crh neurons projecting to the bed nucleus of the stria terminalis accelerate rehydration in thirsty mice. Our results demonstrate the key role of endogenous PSTN activity in the control of feeding and drinking initiation and delineate specific circuits mediating these effects, which may have relevance for eating disorders.
Collapse
Affiliation(s)
- Jeffery L Dunning
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | - Catherine Lopez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Colton Krull
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Maggie Angelo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Leeann Shu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Zhao Z, Covelo A, Couderc Y, Mitra A, Varilh M, Wu Y, Jacky D, Fayad R, Cannich A, Bellocchio L, Marsicano G, Beyeler A. Cannabinoids regulate an insula circuit controlling water intake. Curr Biol 2024; 34:1918-1929.e5. [PMID: 38636514 DOI: 10.1016/j.cub.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.
Collapse
Affiliation(s)
- Zhe Zhao
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Ana Covelo
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Yoni Couderc
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Arojit Mitra
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Marjorie Varilh
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Yifan Wu
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Débora Jacky
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Rim Fayad
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Astrid Cannich
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Luigi Bellocchio
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Giovanni Marsicano
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| | - Anna Beyeler
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|