1
|
Marino S, Bellido T. PTH receptor signalling, osteocytes and bone disease induced by diabetes mellitus. Nat Rev Endocrinol 2024; 20:661-672. [PMID: 39020007 DOI: 10.1038/s41574-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Basic, translational and clinical research over the past few decades has provided new understanding on the mechanisms by which activation of the receptor of parathyroid hormone (parathyroid hormone 1 receptor (PTH1R)) regulates bone physiology and pathophysiology. A fundamental change in the field emerged upon the recognition that osteocytes, which are permanent residents of bone and the most abundant cells in bone, are targets of the actions of natural and synthetic ligands of PTH1R (parathyroid hormone and abaloparatide, respectively), and that these cells drive essential actions related to bone remodelling. Among the numerous genes regulated by PTH1R in osteocytes, SOST (which encodes sclerostin, the WNT signalling antagonist and inhibitor of bone formation) has a critical role in bone homeostasis and changes in its expression are associated with several bone pathologies. The bone fragility syndrome induced by diabetes mellitus is accompanied by increased osteocyte apoptosis and changes in the expression of osteocytic genes, including SOST. This Review will discuss advances in our knowledge of the role of osteocytes in PTH1R signalling and the new opportunities to restore bone health in diabetes mellitus by targeting the osteocytic PTH1R-sclerostin axis.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Baroi S, Czernik PJ, Khan MP, Letson J, Crowe E, Chougule A, Griffin PR, Rosen CJ, Lecka-Czernik B. PPARG in osteocytes controls cell bioenergetics and systemic energy metabolism independently of sclerostin levels in circulation. Mol Metab 2024; 88:102000. [PMID: 39074536 PMCID: PMC11367276 DOI: 10.1016/j.molmet.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVE The skeleton is one of the largest organs in the body, wherein metabolism is integrated with systemic energy metabolism. However, the bioenergetic programming of osteocytes, the most abundant bone cells coordinating bone metabolism, is not well defined. Here, using a mouse model with partial penetration of an osteocyte-specific PPARG deletion, we demonstrate that PPARG controls osteocyte bioenergetics and their contribution to systemic energy metabolism independently of circulating sclerostin levels, which were previously correlated with metabolic status of extramedullary fat depots. METHODS In vivo and in vitro models of osteocyte-specific PPARG deletion, i.e. Dmp1CrePparγflfl male and female mice (γOTKO) and MLO-Y4 osteocyte-like cells with either siRNA-silenced or CRISPR/Cas9-edited Pparγ. As applicable, the models were analyzed for levels of energy metabolism, glucose metabolism, and metabolic profile of extramedullary adipose tissue, as well as the osteocyte transcriptome, mitochondrial function, bioenergetics, insulin signaling, and oxidative stress. RESULTS Circulating sclerostin levels of γOTKO male and female mice were not different from control mice. Male γOTKO mice exhibited a high energy phenotype characterized by increased respiration, heat production, locomotion and food intake. This high energy phenotype in males did not correlate with "beiging" of peripheral adipose depots. However, both sexes showed a trend for reduced fat mass and apparent insulin resistance without changes in glucose tolerance, which correlated with decreased osteocytic responsiveness to insulin measured by AKT activation. The transcriptome of osteocytes isolated from γOTKO males suggested profound changes in cellular metabolism, fuel transport, mitochondria dysfunction, insulin signaling and increased oxidative stress. In MLO-Y4 osteocytes, PPARG deficiency correlated with highly active mitochondria, increased ATP production, and accumulation of reactive oxygen species (ROS). CONCLUSIONS PPARG in male osteocytes acts as a molecular break on mitochondrial function, and protection against oxidative stress and ROS accumulation. It also regulates osteocyte insulin signaling and fuel usage to produce energy. These data provide insight into the connection between osteocyte bioenergetics and their sex-specific contribution to the balance of systemic energy metabolism. These findings support the concept that the skeleton controls systemic energy expenditure via osteocyte metabolism.
Collapse
Affiliation(s)
- Sudipta Baroi
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Piotr J Czernik
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Joshua Letson
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Emily Crowe
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Amit Chougule
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Patrick R Griffin
- The Wertheim UF Scripps Institute, University of Florida, Jupiter, FL 33458, USA.
| | | | - Beata Lecka-Czernik
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| |
Collapse
|
3
|
Lecka-Czernik B, Khan MP, Letson J, Baroi S, Chougule A. Regulatory Effect of Osteocytes on Extramedullary and Bone Marrow Adipose Tissue Development and Function. Curr Osteoporos Rep 2024; 22:301-307. [PMID: 38625510 PMCID: PMC11186862 DOI: 10.1007/s11914-024-00871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE OF REVIEW This review summarizes evidence on osteocyte support of extramedullary and bone marrow adipocyte development and discusses the role of endogenous osteocyte activities of nuclear receptors peroxisome proliferator-activated receptor gamma (PPARG) and alpha (PPARA) in this support. RECENT FINDINGS PPARG and PPARA proteins, key regulators of glucose and fatty acid metabolism, are highly expressed in osteocytes. They play significant roles in the regulation of osteocyte secretome and osteocyte bioenergetics; both activities contributing to the levels of systemic energy metabolism in part through an effect on metabolic function of extramedullary and bone marrow adipocytes. The PPARs-controlled osteocyte endocrine/paracrine activities, including sclerostin expression, directly regulate adipocyte function, while the PPARs-controlled osteocyte fuel utilization and oxidative phosphorylation contribute to the skeletal demands for glucose and fatty acids, whose availability is under the control of adipocytes. Bone is an inherent element of systemic energy metabolism with PPAR nuclear receptors regulating osteocyte-adipocyte metabolic axes.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Department of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, 43614, USA.
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, 43614, USA
| | - Joshua Letson
- Department of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, 43614, USA
| | - Sudipta Baroi
- Department of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, 43614, USA
- Harvard University, School of Dental Medicine, Boston, MA, 02115, USA
| | - Amit Chougule
- Department of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, 43614, USA
- University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Baroi S, Czernik PJ, Khan MP, Letson J, Crowe E, Chougule A, Griffin PR, Rosen CJ, Lecka-Czernik B. PPARG in osteocytes controls cell bioenergetics and systemic energy metabolism independently of sclerostin levels in circulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588029. [PMID: 38645043 PMCID: PMC11030235 DOI: 10.1101/2024.04.04.588029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Objective The skeleton is one of the largest organs in the body, wherein metabolism is integrated with systemic energy metabolism. However, the bioenergetic programming of osteocytes, the most abundant bone cells coordinating bone metabolism, is not well defined. Here, using a mouse model with partial penetration of an osteocyte-specific PPARG deletion, we demonstrate that PPARG controls osteocyte bioenergetics and their contribution to systemic energy metabolism independently of circulating sclerostin levels. Methods In vivo and in vitro models of osteocyte-specific PPARG deletion, i.e. Dmp 1 Cre Pparγ flfl male and female mice (γOT KO ) and MLO-Y4 osteocyte-like cells with either siRNA-silenced or CRISPR/Cas9-edited Pparγ . As applicable, the models were analyzed for levels of energy metabolism, glucose metabolism, and metabolic profile of extramedullary adipose tissue, as well as the osteocyte transcriptome, mitochondrial function, bioenergetics, insulin signaling, and oxidative stress. Results Circulating sclerostin levels of γOT KO male and female mice were not different from control mice. Male γOT KO mice exhibited a high energy phenotype characterized by increased respiration, heat production, locomotion and food intake. This high energy phenotype in males did not correlate with "beiging" of peripheral adipose depots. However, both sexes showed a trend for reduced fat mass and apparent insulin resistance without changes in glucose tolerance, which correlated with decreased osteocytic responsiveness to insulin measured by AKT activation. The transcriptome of osteocytes isolated from γOT KO males suggested profound changes in cellular metabolism, fuel transport and usage, mitochondria dysfunction, insulin signaling and increased oxidative stress. In MLO-Y4 osteocytes, PPARG deficiency correlated with highly active mitochondria, increased ATP production, shifts in fuel utilization, and accumulation of reactive oxygen species (ROS). Conclusions PPARG in male osteocytes acts as a molecular break on mitochondrial function, and protection against oxidative stress and ROS accumulation. It also regulates osteocyte insulin signaling and fuel usage to produce energy. These data provide insight into the connection between osteocyte bioenergetics and their sex-specific contribution to the balance of systemic energy metabolism. These findings support the concept that the skeleton controls systemic energy expenditure via osteocyte metabolism. Highlights Osteocytes function as a body energostat via their bioenergeticsPPARG protein acts as a "molecular break" of osteocyte mitochondrial activityPPARG deficiency activates TCA cycle, oxidative stress and ROS accumulationPPARG controls osteocyte insulin signaling and fuel utilization.
Collapse
|