1
|
Bancaud A, Nakajima T, Suehiro JI, Alric B, Morfoisse F, Cacheux J, Matsunaga YT. Intraluminal pressure triggers a rapid and persistent reinforcement of endothelial barriers. LAB ON A CHIP 2025; 25:2061-2072. [PMID: 40099485 DOI: 10.1039/d5lc00104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In response to mechanical cues, endothelial cells elicit highly sensitive cellular response pathways that contribute to the regulation of the physiology and disorders of the vascular system. However, it remains relatively unexplored how endothelial tissues process and integrate the intraluminal pressure, and in turn regulate the permeation flow across the vessel wall. Leveraging a tissue engineering approach to create microvessels (MVs), we measured real-time permeation flow induced by intraluminal pressures ranging from 0.1 to 2.0 kPa. Our findings reveal that mechanically stimulated MVs strengthen their barrier function within seconds of exposure to pressures below 1 kPa, with this enhanced barrier function persisting for 30 minutes. We demonstrate that this barrier reinforcement is linked to the closure of paracellular gaps. Additionally, we observe that it is associated with, and depends on, actin cytoskeleton reorganization, including the accumulation of stress fibers near intercellular junctions and the broadening of adherence junction protein localization. These findings provide insights into the ability of endothelial tissues to regulate interstitial fluid flow in response to sudden increases in blood pressure.
Collapse
Affiliation(s)
- Aurélien Bancaud
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
- CNRS, LAAS, 7 Avenue Du Colonel Roche, F-31400, Toulouse, France.
| | - Tadaaki Nakajima
- School of Science, Department of Science, Yokohama City University, Yokohama 236-0027, Japan
| | - Jun-Ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Baptiste Alric
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Florent Morfoisse
- I2MC, Inserm UMR 1297, UT3, Université de Toulouse, Toulouse, France
| | - Jean Cacheux
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
- CNRS, LAAS, 7 Avenue Du Colonel Roche, F-31400, Toulouse, France.
| | - Yukiko T Matsunaga
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
2
|
Alcaide D, Alric B, Cacheux J, Nakano S, Doi K, Shinohara M, Kondo M, Bancaud A, Matsunaga YT. Laminin and hyaluronan supplementation of collagen hydrogels enhances endothelial function and tight junction expression on three-dimensional cylindrical microvessel-on-a-chip. Biochem Biophys Res Commun 2024; 724:150234. [PMID: 38865812 DOI: 10.1016/j.bbrc.2024.150234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Vasculature-on-chip (VoC) models have become a prominent tool in the study of microvasculature functions because of their cost-effective and ethical production process. These models typically use a hydrogel in which the three-dimensional (3D) microvascular structure is embedded. Thus, VoCs are directly impacted by the physical and chemical cues of the supporting hydrogel. Endothelial cell (EC) response in VoCs is critical, especially in organ-specific vasculature models, in which ECs exhibit specific traits and behaviors that vary between organs. Many studies customize the stimuli ECs perceive in different ways; however, customizing the hydrogel composition accordingly to the target organ's extracellular matrix (ECM), which we believe has great potential, has been rarely investigated. We explored this approach to organ-specific VoCs by fabricating microvessels (MVs) with either human umbilical vein ECs or human brain microvascular ECs in a 3D cylindrical VoC using a collagen hydrogel alone or one supplemented with laminin and hyaluronan, components found in the brain ECM. We characterized the physical properties of these hydrogels and analyzed the barrier properties of the MVs. Barrier function and tight junction (ZO-1) expression improved with the addition of laminin and hyaluronan in the composite hydrogel.
Collapse
Affiliation(s)
- Daniel Alcaide
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Baptiste Alric
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Jean Cacheux
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan; Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, 31037, Toulouse, France
| | - Shizuka Nakano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Makoto Kondo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Aurelien Bancaud
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan; LAAS-CNRS, CNRS UPR8001, 7 Avenue du Colonel Roche, 31400, Toulouse, France.
| | - Yukiko T Matsunaga
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan.
| |
Collapse
|
3
|
Cacheux J, Nakajima T, Alcaide D, Sano T, Doi K, Bancaud A, Matsunaga YT. Protocol for fabricating and characterizing microvessel-on-a-chip for human umbilical vein endothelial cells. STAR Protoc 2024; 5:102950. [PMID: 38483899 PMCID: PMC10951580 DOI: 10.1016/j.xpro.2024.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Organ-on-a-chip technologies enable the fabrication of endothelial tissues, so-called microvessels (MVs), which emulate the endothelial barrier function in healthy or disease conditions. In this protocol, we describe the fabrication of perfusable open-chamber style MVs embedded in collagen gels. We then report a simple technology to characterize the MV barrier properties in static or under pressure based on fluorescence confocal imaging. Finally, we provide quantification techniques that enable us to infer the structure of MV paracellular pores. For complete details on the use and execution of this protocol, please refer to Cacheux et al.1.
Collapse
Affiliation(s)
- Jean Cacheux
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Tadaaki Nakajima
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Daniel Alcaide
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Takanori Sano
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Aurélien Bancaud
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan; CNRS, LAAS, 7 Avenue du colonel Roche, 31400 Toulouse, France.
| | - Yukiko T Matsunaga
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan.
| |
Collapse
|
4
|
Takahashi K, Kobayashi M, Katsumata H, Tokizaki S, Anzai T, Ikeda Y, Alcaide DM, Maeda K, Ishihara M, Tahara K, Kubota Y, Itoh F, Park J, Takahashi K, Matsunaga YT, Yoshimatsu Y, Podyma‐Inoue KA, Watabe T. CD40 is expressed in the subsets of endothelial cells undergoing partial endothelial-mesenchymal transition in tumor microenvironment. Cancer Sci 2024; 115:490-506. [PMID: 38111334 PMCID: PMC10859613 DOI: 10.1111/cas.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Tumor progression and metastasis are regulated by endothelial cells undergoing endothelial-mesenchymal transition (EndoMT), a cellular differentiation process in which endothelial cells lose their properties and differentiate into mesenchymal cells. The cells undergoing EndoMT differentiate through a spectrum of intermediate phases, suggesting that some cells remain in a partial EndoMT state and exhibit an endothelial/mesenchymal phenotype. However, detailed analysis of partial EndoMT has been hampered by the lack of specific markers. Transforming growth factor-β (TGF-β) plays a central role in the induction of EndoMT. Here, we showed that inhibition of TGF-β signaling suppressed EndoMT in a human oral cancer cell xenograft mouse model. By using genetic labeling of endothelial cell lineage, we also established a novel EndoMT reporter cell system, the EndoMT reporter endothelial cells (EMRECs), which allow visualization of sequential changes during TGF-β-induced EndoMT. Using EMRECs, we characterized the gene profiles of multiple EndoMT stages and identified CD40 as a novel partial EndoMT-specific marker. CD40 expression was upregulated in the cells undergoing partial EndoMT, but decreased in the full EndoMT cells. Furthermore, single-cell RNA sequencing analysis of human tumors revealed that CD40 expression was enriched in the population of cells expressing both endothelial and mesenchymal cell markers. Moreover, decreased expression of CD40 in EMRECs enhanced TGF-β-induced EndoMT, suggesting that CD40 expressed during partial EndoMT inhibits transition to full EndoMT. The present findings provide a better understanding of the mechanisms underlying TGF-β-induced EndoMT and will facilitate the development of novel therapeutic strategies targeting EndoMT-driven cancer progression and metastasis.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hisae Katsumata
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shiori Tokizaki
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tatsuhiko Anzai
- Department of Biostatistics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Yukinori Ikeda
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | | | - Kentaro Maeda
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Makoto Ishihara
- Scientific Affairs Section, Life Science Sales Department, Life Science Business Division, Medical Business GroupSony CorporationKanagawaJapan
| | - Katsutoshi Tahara
- Section 1, Product Design Department 2, Medical Product Design Division, Medical Business GroupSony CorporationKanagawaJapan
| | - Yoshiaki Kubota
- Department of AnatomyKeio University School of MedicineTokyoJapan
| | - Fumiko Itoh
- Laboratory of Stem Cells RegulationsTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Jihwan Park
- School of Life SciencesGwangju Institute of Science and Technology (GIST)GwangjuSouth Korea
| | - Kunihiko Takahashi
- Department of Biostatistics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | | | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
- Division of Pharmacology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|