1
|
Yan K, Sun X, Fan C, Wang X, Yu H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int J Mol Sci 2024; 25:10918. [PMID: 39456701 PMCID: PMC11507114 DOI: 10.3390/ijms252010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune thyroid diseases (AITDs) are among the most prevalent organ-specific autoimmune disorders, with thyroid hormones playing a pivotal role in the gastrointestinal system's structure and function. Emerging evidence suggests a link between AITDs and the gut microbiome, which is a diverse community of organisms that are essential for digestion, absorption, intestinal homeostasis, and immune defense. Recent studies using 16S rRNA and metagenomic sequencing of fecal samples from AITD patients have revealed a significant correlation between a gut microbiota imbalance and the severity of AITDs. Progress in animal models of autoimmune diseases has shown that intervention in the gut microbiota can significantly alter the disease severity. The gut microbiota influences T cell subgroup differentiation and modulates the pathological immune response to AITDs through mechanisms involving short-chain fatty acids (SCFAs), lipopolysaccharides (LPSs), and mucosal immunity. Conversely, thyroid hormones also influence gut function and microbiota composition. Thus, there is a bidirectional relationship between the thyroid and the gut ecosystem. This review explores the pathogenic mechanisms of the gut microbiota and its metabolites in AITDs, characterizes the gut microbiota in Graves' disease (GD) and Hashimoto's thyroiditis (HT), and examines the interactions between the gut microbiota, thyroid hormones, T cell differentiation, and trace elements. The review aims to enhance understanding of the gut microbiota-thyroid axis and proposes novel approaches to mitigate AITD severity through gut microbiota modulation.
Collapse
Affiliation(s)
- Kai Yan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| |
Collapse
|
2
|
Chen H, Cao J, Zhang F, Xiong W. Significance of Gut Microbiota on Graves' Disease. Int J Gen Med 2024; 17:3967-3974. [PMID: 39281039 PMCID: PMC11402343 DOI: 10.2147/ijgm.s467888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Growing research proves gut microbiota and thyroid autoimmunity are linked. Graves' disease (GD), as an autoimmune thyroid disease (AITD), is attributed to the production of thyroid-stimulating hormone receptor (TSHR) autoantibodies that bind to the thyroid follicular endothelial cells. It is well known that genetic factors, environmental factors, and immune disorders count for much in the development of GD. So far, the pathogenesis of GD is not elucidated. Emerging research reveals that the change in gut microbiota composition and its metabolites are related to GD. The gut microbial diversity is reduced in GDs compared with healthy controls (HCs). Firmicutes and Bacteroidetes account for a large proportion at the genus level. It is found that phyla Bacteroidetes increased while phyla Firmicutes decreased in Graves' Disease patients (GD patients). Moreover, gut microbiota modulates the immune system to produce cytokines through bacterial metabolites. This article aims to find out the relation between gut microbiota dysbiosis and the development of GD. As more molecular pathways of bacterial metabolites are revealed, targeting microbiota is expected to the treatment of GD.
Collapse
Affiliation(s)
- Haiyan Chen
- Wuzhou Workers Hospital, Wuzhou, Guangxi Zhuang, People's Republic of China
| | - Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| |
Collapse
|
3
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
4
|
ZUFRY H, ZULFA PO, HARIYANTO TI. The gut microbiota and its role in Graves' Disease: a systematic review and meta-analysis. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:300-308. [PMID: 39364132 PMCID: PMC11444861 DOI: 10.12938/bmfh.2024-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 10/05/2024]
Abstract
Emerging research indicates the potential involvement of gut bacteria in the etiology of Graves' Disease (GD). However, the evidence regarding this matter is still conflicting. The primary objective of this investigation was to examine the correlation between gut microbiota and GD. A comprehensive search was conducted of the Cochrane Library, Scopus, Europe PMC, and Medline databases up until August 1, 2023, utilizing a combination of relevant keywords. This review incorporates literature that examined the composition of gut microbiota in patients with GD. We employed random-effect models to analyze the standardized mean difference (SMD) and present the outcomes together with their corresponding 95% confidence intervals (CIs). A total of ten studies were incorporated. The results of our meta-analysis indicated that patients with GD have a reduced alpha diversity of gut microbiota as evidence by a significant reduction of Chao1 (std. mean difference -0.58; 95% CI -0.90, -0.26, p=0.0004; I2 =61%), ACE (std. mean difference -0.64; 95% CI -1.09, -0.18, p=0.006; I2 =77%), and Shannon index (std. mean difference -0.71; 95% CI -1.25, -0.17, p=0.01; I2 =90%) when compared with healthy controls. At the phylum level, the abundance of Firmicutes was reduced in GD patients, while that of Bacteroidetes was increased. This study suggests a notable decrease in the richness and variety of gut microbiota among people diagnosed with GD in comparison with healthy controls.
Collapse
Affiliation(s)
- Hendra ZUFRY
- Division of Endocrinology, Metabolism, and Diabetes, Thyroid
Center, Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala/Dr.
Zainoel Abidin Hospital, Banda Aceh, Aceh 24415, Indonesia
- Innovation and Research Center of Endocrinology, Faculty of
Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Putri Oktaviani ZULFA
- Innovation and Research Center of Endocrinology, Faculty of
Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | | |
Collapse
|
5
|
Liu Y, Tang S, Feng Y, Xue B, Cheng C, Su Y, Wei W, Zhang L, Huang Z, Shi X, Fang Y, Yang J, Zhang Y, Deng X, Wang L, Ren H, Wang C, Yuan H. Alteration in gut microbiota is associated with immune imbalance in Graves' disease. Front Cell Infect Microbiol 2024; 14:1349397. [PMID: 38533382 PMCID: PMC10963416 DOI: 10.3389/fcimb.2024.1349397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background Graves' disease (GD), characterized by immune aberration, is associated with gut dysbiosis. Despite the growing interest, substantial evidence detailing the precise impact of gut microbiota on GD's autoimmune processes remains exceedingly rare. Objective This study was designed to investigate the influence of gut microbiota on immune dysregulation in GD. Methods It encompassed 52 GD patients and 45 healthy controls (HCs), employing flow cytometry and enzyme-linked immunosorbent assay to examine lymphocyte and cytokine profiles, alongside lipopolysaccharide (LPS) levels. Gut microbiota profiles and metabolic features were assessed using 16S rRNA gene sequencing and targeted metabolomics. Results Our observations revealed a disturbed B-cell distribution and elevated LPS and pro-inflammatory cytokines in GD patients compared to HCs. Significant differences in gut microbiota composition and a marked deficit in short-chain fatty acid (SCFA)-producing bacteria, including ASV263(Bacteroides), ASV1451(Dialister), and ASV503(Coprococcus), were observed in GD patients. These specific bacteria and SCFAs showed correlations with thyroid autoantibodies, B-cell subsets, and cytokine levels. In vitro studies further showed that LPS notably caused B-cell subsets imbalance, reducing conventional memory B cells while increasing naïve B cells. Additionally, acetate combined with propionate and butyrate showcased immunoregulatory functions, diminishing cytokine production in LPS-stimulated cells. Conclusion Overall, our results highlight the role of gut dysbiosis in contributing to immune dysregulation in GD by affecting lymphocyte status and cytokine production.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Feng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Xue
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Su
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhoufeng Huang
- Institution of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Deng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Corporation Limited, Shanghai, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Liu S, Li F, Cai Y, Ren L, Sun L, Gang X, Wang G. Bacteroidaceae, Bacteroides, and Veillonella: emerging protectors against Graves' disease. Front Cell Infect Microbiol 2024; 14:1288222. [PMID: 38404289 PMCID: PMC10884117 DOI: 10.3389/fcimb.2024.1288222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Background Graves' disease (GD) is the most common cause of hyperthyroidism, and its pathogenesis remains incompletely elucidated. Numerous studies have implicated the gut microbiota in the development of thyroid disorders. This study employs Mendelian randomization analysis to investigate the characteristics of gut microbiota in GD patients, aiming to offer novel insights into the etiology and treatment of Graves' disease. Methods Two-sample Mendelian randomization (MR) analysis was employed to assess the causal relationship between Graves' disease and the gut microbiota composition. Gut microbiota data were sourced from the international consortium MiBioGen, while Graves' disease data were obtained from FINNGEN. Eligible single nucleotide polymorphisms (SNPs) were selected as instrumental variables. Multiple analysis methods, including inverse variance-weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-RAPS, were utilized. Sensitivity analyses were conducted employing MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis as quality control measures. Results The Mendelian randomization study conducted in a European population revealed a decreased risk of Graves' disease associated with Bacteroidaceae (Odds ratio (OR) [95% confidence interval (CI)]: 0.89 [0.89 ~ 0.90], adjusted P value: <0.001), Bacteroides (OR: [95% CI]: 0.555 [0.437 ~ 0.706], adjusted P value: <0.001), and Veillonella (OR [95% CI]: 0.632 [0.492 ~ 0.811], adjusted P value: 0.016). No significant evidence of heterogeneity, or horizontal pleiotropy was detected. Furthermore, the preliminary MR analysis identified 13 bacterial species including Eubacterium brachy group and Family XIII AD3011 group, exhibiting significant associations with Graves' disease onset, suggesting potential causal effects. Conclusion A causal relationship exists between gut microbiota and Graves' disease. Bacteroidaceae, Bacteroides, and Veillonella emerge as protective factors against Graves' disease development. Prospective probiotic supplementation may offer a novel avenue for adjunctive treatment in the management of Graves' disease in the future.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Linan Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| |
Collapse
|
7
|
Bogović Crnčić T, Girotto N, Ilić Tomaš M, Krištofić I, Klobučar S, Batičić L, Ćurko-Cofek B, Sotošek V. Innate Immunity in Autoimmune Thyroid Disease during Pregnancy. Int J Mol Sci 2023; 24:15442. [PMID: 37895126 PMCID: PMC10607674 DOI: 10.3390/ijms242015442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Autoimmune thyroid disease (AITD) is the most common organ-specific autoimmune disorder clinically presented as Hashimoto thyroiditis (HT) and Graves' disease (GD). The pathogenesis of AITD is caused by an inappropriate immune response related to genetic, non-genetic, and environmental factors. Pregnancy is one of the factors that have a great influence on the function of the thyroid gland because of the increased metabolic demand and the effects of hormones related to pregnancy. During pregnancy, an adaptation of the maternal immune system occurs, especially of the innate immune system engaged in maintaining adaptive immunity in the tolerant state, preventing the rejection of the fetus. Pregnancy-related hormonal changes (estrogen, progesterone, hCG) may modulate the activity of innate immune cells, potentially worsening the course of AITD during pregnancy. This especially applies to NK cells, which are associated with exacerbation of HD and GD. On the other hand, previous thyroid disorders can affect fertility and cause adverse outcomes of pregnancy, such as placental abruption, spontaneous abortion, and premature delivery. Additionally, it can cause fetal growth retardation and may contribute to impaired neuropsychological development of the fetus. Therefore, maintaining the thyroid equilibrium in women of reproductive age and in pregnant women is of the highest importance.
Collapse
Affiliation(s)
- Tatjana Bogović Crnčić
- Department of Nuclear Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.B.C.); (M.I.T.)
| | - Neva Girotto
- Department of Nuclear Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.B.C.); (M.I.T.)
| | - Maja Ilić Tomaš
- Department of Nuclear Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.B.C.); (M.I.T.)
| | - Ines Krištofić
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Sanja Klobučar
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Clinical Medical Sciences II, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| |
Collapse
|