1
|
Gattinger P, Kozlovskaya LI, Lunin AS, Gancharova OS, Sirazova DI, Apolokhov VD, Chekina ES, Gordeychuk IV, Karaulov AV, Valenta R, Ishmukhametov AA. Fusion protein-based COVID-19 vaccines exemplified by a chimeric vaccine based on a single fusion protein (W-PreS-O). Front Immunol 2025; 16:1452814. [PMID: 39935478 PMCID: PMC11811753 DOI: 10.3389/fimmu.2025.1452814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
In this article we discuss characteristics of fusion protein-based SARS-CoV-2 vaccines. We focus on recombinant vaccine antigens comprising fusion proteins consisting of combinations of SARS-CoV-2-derived antigens or peptides or combinations of SARS-CoV-2 antigens/peptides with SARS-CoV-2-unrelated proteins/peptides. These fusion proteins are made to increase the immunogenicity of the vaccine antigens and/or to enable special targeting of the immune system. The protein-based vaccine approach is exemplified solely in a proof of concept study by using W-PreS-O, a chimeric vaccine based on a single fusion protein (W-PreS-O), combining RBDs from Wuhan hu-1 wild-type and Omicron BA.1 with the hepatitis B virus (HBV)-derived PreS surface antigen adsorbed to aluminum hydroxide. The W-PreS-O vaccine was evaluated in Syrian hamsters which were immunized three times at three-week intervals with W-PreS-O or with aluminum hydroxide (placebo) before they were infected with Omicron BA.1. Neutralizing antibody (nAB) titers, weight, lung symptoms, and viral loads, as measured using RT-PCR in the upper and lower respiratory tracts, were determined. In addition, infectious virus titers from the lungs were measured using a plaque-forming assay. We found that W-PreS-O-vaccinated hamsters developed robust nABs against Omicron BA.1, showed almost no development of pneumonia, and had significantly reduced infectious virus titers in the lungs. Importantly, the viral loads in the nasal cavities of W-PreS-O-vaccinated hamsters were close to or above the PCR cycle threshold considered to be non-infectious. The data of our proof-of-concept study provides compelling evidence that the W-PreS-O vaccine has protective effect against Omicron BA.1 in a Syrian hamster in vivo infection model and thus support the promising results obtained also for other fusion protein-based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Pia Gattinger
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Luibov I. Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Alexander S. Lunin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Olga S. Gancharova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Dina I. Sirazova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vasiliy D. Apolokhov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Egor S. Chekina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Ilya V. Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander V. Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Division of Immunopathology, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Center for Molecular Allergology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Aydar A. Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
2
|
Domingo JL. A review of the scientific literature on experimental toxicity studies of COVID-19 vaccines, with special attention to publications in toxicology journals. Arch Toxicol 2024; 98:3603-3617. [PMID: 39225797 PMCID: PMC11489230 DOI: 10.1007/s00204-024-03854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Since the reports of the first cases of COVID-19, in less than 5 years, a huge number of documents regarding that disease and the coronavirus (SARS-CoV-2), responsible for the infection, have been published. The tremendous number of scientific documents covers many topics on different issues directly related to COVID-19/SARS-CoV-2. The number of articles-including reviews-reporting adverse/side effects of the approved COVID-19 vaccines is considerable. A wide range of adverse/side effects have been reported in humans after COVID-19 vaccination: thrombotic events/thrombocytopenia, myocarditis/pericarditis, cutaneous reactions, immune-mediated effects, psychiatric adverse events, systemic lupus erythematosus, reproductive toxicity, and other miscellaneous adverse effects. In contrast, information on nonclinical studies conducted to assess the potential toxicity/adverse effects of the COVID-19 vaccines in laboratory animals, is comparatively very scarce. The present review was aimed at revising the scientific literature regarding the studies in laboratory animals on the toxic/adverse effects of COVID-19 vaccines. In addition, the investigations reported in those specific toxicology journals with the highest impact factors have been examined one by one. The results of the present review indicate that most nonclinical/experimental studies on the adverse/toxic effects of the COVID-19 vaccines and/or potential candidates showed-in general terms-a good safety profile. Only in some animal studies were certain adverse effects found. However, a rather surprising result has been the limited number of available (in the databases PubMed and Scopus) nonclinical studies performed by the companies that have been the largest manufacturers of mRNA vaccines in the world. It is assumed that these studies have been conducted. However, they have not been published in scientific journals, which does not allow the judgment of the international scientific community, including toxicologists.
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
3
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
4
|
Tobias J, Steinberger P, Wilkinson J, Klais G, Kundi M, Wiedermann U. SARS-CoV-2 Vaccines: The Advantage of Mucosal Vaccine Delivery and Local Immunity. Vaccines (Basel) 2024; 12:795. [PMID: 39066432 PMCID: PMC11281395 DOI: 10.3390/vaccines12070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Immunity against respiratory pathogens is often short-term, and, consequently, there is an unmet need for the effective prevention of such infections. One such infectious disease is coronavirus disease 19 (COVID-19), which is caused by the novel Beta coronavirus SARS-CoV-2 that emerged around the end of 2019. The World Health Organization declared the illness a pandemic on 11 March 2020, and since then it has killed or sickened millions of people globally. The development of COVID-19 systemic vaccines, which impressively led to a significant reduction in disease severity, hospitalization, and mortality, contained the pandemic's expansion. However, these vaccines have not been able to stop the virus from spreading because of the restricted development of mucosal immunity. As a result, breakthrough infections have frequently occurred, and new strains of the virus have been emerging. Furthermore, SARS-CoV-2 will likely continue to circulate and, like the influenza virus, co-exist with humans. The upper respiratory tract and nasal cavity are the primary sites of SARS-CoV-2 infection and, thus, a mucosal/nasal vaccination to induce a mucosal response and stop the virus' transmission is warranted. In this review, we present the status of the systemic vaccines, both the approved mucosal vaccines and those under evaluation in clinical trials. Furthermore, we present our approach of a B-cell peptide-based vaccination applied by a prime-boost schedule to elicit both systemic and mucosal immunity.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joy Wilkinson
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gloria Klais
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Sisteré-Oró M, Du J, Wortmann DDJ, Filippi MD, Cañas-Ruano E, Arrieta-Aldea I, Marcos-Blanco A, Castells X, Grau S, García-Giralt N, Perez-Zsolt D, Boreika R, Izquierdo-Useros N, Güerri-Fernandez R, Meyerhans A. Pan-pox-specific T-cell responses in HIV-1-infected individuals after JYNNEOS vaccination. J Med Virol 2024; 96:e29317. [PMID: 38150509 DOI: 10.1002/jmv.29317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
People living with human immunodeficiency virus (HIV) are the individuals most affected by the current Monkeypox virus outbreak that was first announced in May 2022. Here we report Pan-pox-specific T-cell responses in a cohort of HIV-1-infected individuals after receiving the nonreplicative, attenuated smallpox vaccine JYNNEOS from Bavarian Nordic. Intradermal (i.d.) and subcutaneous (s.c.) vaccination was safe without major side effects. Dose-sparing i.d. vaccination was superior to s.c. vaccination and promoted T-cell polyfunctionality, and the expression of the gut-homing marker α4β7 integrin on lymphocytes. HIV-1-infected individuals with CD4 T-cell counts ≤500/mm3 blood required at least a booster vaccination to exhibit efficient virus-specific T-cell responses. The magnitude of the Th1 response after this booster directly correlated with the CD4 T-cell count of the vaccinees. Further studies with a larger number of participants are warranted to confirm and expand our observations.
Collapse
Affiliation(s)
- Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan Du
- Infectious Diseases Unit, Hospital del Mar Research Institute, Barcelona, Spain
| | - Diana D J Wortmann
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marina D Filippi
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | | | - Xavier Castells
- Preventive Medicine Unit, Hospital del Mar Research Institute, Barcelona, Spain
| | - Santiago Grau
- Department of Pharmacy, Hospital del Mar, Barcelona, Spain
| | - Natalia García-Giralt
- Infectious Diseases Unit, Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Perez-Zsolt
- IrsiCaixa, AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | - Rytis Boreika
- IrsiCaixa, AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa, AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert Güerri-Fernandez
- Infectious Diseases Unit, Hospital del Mar Research Institute, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona (UPF), Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies Pg. Lluís Companys 23, Barcelona, Spain
| |
Collapse
|