1
|
Tashyreva D, Votýpka J, Yabuki A, Horák A, Lukeš J. Description of new diplonemids (Diplonemea, Euglenozoa) and their endosymbionts: Charting the morphological diversity of these poorly known heterotrophic flagellates. Protist 2025; 177:126090. [PMID: 40009938 DOI: 10.1016/j.protis.2025.126090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Diplonemids are a hyperdiverse group of flagellated protists, but with less than two dozen formally described representatives. Here, we describe four new species of cultured diplonemids, identified on the basis of their 18S rRNA sequences, light-, fluorescence-, scanning- and transmission electron microscopy. Three new species belong to the genus Rhynchopus (R. asiaticus sp.n., R. granulatus sp.n., and R. valaseki sp.n.), while the fourth species is an unusual representative of the genus Lacrimia (L. aflagellata sp.n.). The latter organism is the first diplonemid outside the genus Rhynchopus (as defined previously) to show a gliding trophic stage with flagellar stubs concealed inside the flagellar pocket and a highly motile dispersive swimming stage. Since this character is thus no longer a genus-specific apomorphy, we provide a taxonomic revision of the genus Rhynchopus with separation of the new genus Natarhynchopus gen. n. We also identify bacterial endosymbionts of L. aflagellata and R. asiaticus as Ca. Syngnamydia medusae (Chlamydiales, Simkaniaceae) and Ca. Cytomitobacter rhynchopi sp. n. (Alphaproteobacteria, Holosporaceae), respectively, and discuss their potential functions. This is the first report of a chlamydial symbiont within a diplonemid host. We also propose that diplonemids may serve as vectors for chlamydial pathogens of marine fish.
Collapse
Affiliation(s)
- Daria Tashyreva
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Akinori Yabuki
- Japanese Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), Yokohama, Kanagawa 236-0001, Japan
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Liu S, Ding X, Liu K, Chen N. Harmonized coexistence of intragenomic variations in diatom Skeletonema strains. ENVIRONMENTAL RESEARCH 2024; 262:119799. [PMID: 39147184 DOI: 10.1016/j.envres.2024.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Metabarcoding analysis has been demonstrated to be an effective technology for monitoring diversity and dynamics of phytoplankton including Skeletonema species. Although molecular diversity uncovered in metabarcoding projects has generally been interpreted as sum of interspecies diversity and intraspecies diversity, accumulating evidence suggests that it also harbors unprecedentedly high levels of intra-genomic variations (IGVs). As up to thousands of amplicon sequence variants (ASVs) identified in a typical metabarcoding project can be annotated to be Skeletonema species, we hypothesize that substantial portions of these ASVs are contributed by IGVs. Here, the nature of IGVs in Skeletonema species was quantitatively analyzed by carrying out single-strain metabarcoding analysis of 18S rDNA V4 in 49 strains belonging to seven Skeletonema species. Results showed that each Skeletonema strain harbored a high level of IGVs as expected. While many Skeletonema strains each contained one dominant ASV and a substantial number of ASVs displaying much lower relative abundance, other Skeletonema strains each contained multiple ASVs with comparable or nearly equally abundances. Thus the co-existence of multiple dominant ASVs in a single cell indicated a tug-of-war of these variants in evolution, which may eventually result in harmonized coexistence of multiple dominant ASVs. A total of nine dominant ASVs and 652 non-dominant ASVs were found in 49 strains of seven Skeletonema species, indicating rich interspecies and intraspecies variations, and complex evolution of IGVs in genus of Skeletonema. The results confirmed that the extensive degree of IGVs was the main contributor to the high molecular diversity revealed by metabarcoding analysis. This study highlights the importance of quantitative characterization of IGVs in Skeletonema species for accurate interpretation of species diversity in metabarcoding analysis.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiangxiang Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
3
|
Morard R, Darling KF, Weiner AKM, Hassenrück C, Vanni C, Cordier T, Henry N, Greco M, Vollmar NM, Milivojevic T, Rahman SN, Siccha M, Meilland J, Jonkers L, Quillévéré F, Escarguel G, Douady CJ, de Garidel-Thoron T, de Vargas C, Kucera M. The global genetic diversity of planktonic foraminifera reveals the structure of cryptic speciation in plankton. Biol Rev Camb Philos Soc 2024; 99:1218-1241. [PMID: 38351434 DOI: 10.1111/brv.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 07/06/2024]
Abstract
The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.
Collapse
Affiliation(s)
- Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Kate F Darling
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JW, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Agnes K M Weiner
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Christiane Hassenrück
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, Warnemünde, 18119, Germany
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Tristan Cordier
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, 75016, France
| | - Mattia Greco
- Institut de Ciències del Mar, Passeig Marítim de la Barceloneta, Barcelona, 37-49, Spain
| | - Nele M Vollmar
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Tamara Milivojevic
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shirin Nurshan Rahman
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Julie Meilland
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Lukas Jonkers
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Frédéric Quillévéré
- Univ Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR CNRS 5276 LGL-TPE, Villeurbanne, F-69622, France
| | - Gilles Escarguel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
- Institut Universitaire de France, Paris, France
| | | | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, Roscoff, 29680, France
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| |
Collapse
|
4
|
Wang H, Liu K, He Z, Chen Y, Hu Z, Chen W, Leaw CP, Chen N. Extensive intragenomic variations of the 18S rDNA V4 region in the toxigenic diatom species Pseudo-nitzschia multistriata revealed through high-throughput sequencing. MARINE POLLUTION BULLETIN 2024; 201:116198. [PMID: 38428045 DOI: 10.1016/j.marpolbul.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- Department of Aquaculture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Weizhou Chen
- Institution of Marine Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
5
|
Carve M, Manning T, Mouradov A, Shimeta J. eDNA metabarcoding reveals biodiversity and depth stratification patterns of dinoflagellate assemblages within the epipelagic zone of the western Coral Sea. BMC Ecol Evol 2024; 24:38. [PMID: 38528460 DOI: 10.1186/s12862-024-02220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Dinoflagellates play critical roles in the functioning of marine ecosystems but also may pose a hazard to human and ecosystem health by causing harmful algal blooms (HABs). The Coral Sea is a biodiversity hotspot, but its dinoflagellate assemblages in pelagic waters have not been studied by modern sequencing methods. We used metabarcoding of the 18 S rRNA V4 amplicon to assess the diversity and structure of dinoflagellate assemblages throughout the water column to a depth of 150 m at three stations in the Western Coral Sea. Additionally, at one station we compared metabarcoding with morphological methods to optimise identification and detection of dinoflagellates. RESULTS Stratification of dinoflagellate assemblages was evident in depth-specific relative abundances of taxonomic groups; the greatest difference was between the 5-30 m assemblages and the 130-150 m assemblages. The relative abundance of Dinophyceae (photosynthetic and heterotrophic) decreased with increasing depth, whereas that of Syndiniales (parasitic) increased with increasing depth. The composition of major taxonomic groups was similar among stations. Taxonomic richness and diversity of amplicon sequence variants (ASVs) were similar among depths and stations; however, the abundance of dominant taxa was highest within 0-30 m, and the abundance of rare taxa was highest within 130-150 m, indicating adaptations to specific depth strata. The number of unclassified ASVs at the family and species levels was very high, particularly for Syndinian representatives. CONCLUSIONS Dinoflagellate assemblages in open water of the Coral Sea are highly diverse and taxonomically stratified by depth; patterns of relative abundance along the depth gradient reflect environmental factors and ecological processes. Metabarcoding detects more species richness than does traditional microscopical methods of sample analysis, yet the methods are complementary, with morphological analysis revealing additional richness. The large number of unclassified dinoflagellate-ASVs indicates a need for improved taxonomic reference databases and suggests presence of dinoflagellate-crypto and-morphospecies.
Collapse
Affiliation(s)
- Megan Carve
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Tahnee Manning
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Aidyn Mouradov
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|