1
|
Li X, Fang L, Zhou R, Yao L, Clayton SW, Muscat S, Kamm DR, Wang C, Liu CJ, Qin L, Tower RJ, Karner CM, Guilak F, Tang SY, Loiselle AE, Meyer GA, Shen J. Current cutting-edge omics techniques on musculoskeletal tissues and diseases. Bone Res 2025; 13:59. [PMID: 40484858 DOI: 10.1038/s41413-025-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/31/2025] [Accepted: 04/27/2025] [Indexed: 06/11/2025] Open
Abstract
Musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, osteoporosis, bone fracture, intervertebral disc degeneration, tendinopathy, and myopathy, are prevalent conditions that profoundly impact quality of life and place substantial economic burdens on healthcare systems. Traditional bulk transcriptomics, genomics, proteomics, and metabolomics have played a pivotal role in uncovering disease-associated alterations at the population level. However, these approaches are inherently limited in their ability to resolve cellular heterogeneity or to capture the spatial organization of cells within tissues, thus hindering a comprehensive understanding of the complex cellular and molecular mechanisms underlying these diseases. To address these limitations, advanced single-cell and spatial omics techniques have emerged in recent years, offering unparalleled resolution for investigating cellular diversity, tissue microenvironments, and biomolecular interactions within musculoskeletal tissues. These cutting-edge techniques enable the detailed mapping of the molecular landscapes in diseased tissues, providing transformative insights into pathophysiological processes at both the single-cell and spatial levels. This review presents a comprehensive overview of the latest omics technologies as applied to musculoskeletal research, with a particular focus on their potential to revolutionize our understanding of disease mechanisms. Additionally, we explore the power of multi-omics integration in identifying novel therapeutic targets and highlight key challenges that must be overcome to successfully translate these advancements into clinical applications.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Liang Fang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sade W Clayton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Samantha Muscat
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics & Physical Performance, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Dakota R Kamm
- Program in Physical Therapy, Washington University, St. Louis, MO, USA
| | - Cuicui Wang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Tower
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Courtney M Karner
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Alayna E Loiselle
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics & Physical Performance, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Gretchen A Meyer
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Program in Physical Therapy, Washington University, St. Louis, MO, USA
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.
| |
Collapse
|
2
|
Godwin JS, Michel JM, Libardi CA, Kavazis AN, Fry CS, Frugé AD, McCashland M, Vechetti IJ, McCarthy JJ, Mobley CB, Roberts MD. Resistance exercise and mechanical overload upregulate vimentin for skeletal muscle remodeling. Am J Physiol Cell Physiol 2025; 328:C1509-C1525. [PMID: 40178318 DOI: 10.1152/ajpcell.01028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
We adopted a proteomic and follow-through approach to investigate how mechanical overload (MOV) potentially affects novel targets in skeletal muscle, and how a perturbation in this response could potentially affect the adaptive response. First, we determined that 10 wk of resistance training in 15 college-aged females increased sarcolemmal-associated protein content (+10.1%, P < 0.05). Sarcolemmal protein isolates were then queried using mass spectrometry-based proteomics, ∼10% (38/387) of proteins putatively associated with the sarcolemma or extracellular matrix (ECM) were upregulated (>1.5-fold, P < 0.05), and one target (intermediate filament vimentin; VIM) warranted further investigation due to its correlation to myofiber hypertrophy (r = 0.652, P = 0.009). VIM expression was then examined in 4-mo-old C57BL/6J mice following 10 and 20 days of plantaris MOV via synergist ablation. Relative to Sham (control) mice, VIM mRNA and protein content was significantly higher in MOV mice, and immunohistochemistry indicated that VIM predominantly resided in the ECM. MOV experiments were replicated in Pax7-DTA (satellite cell depleted) mice, which reduced VIM in the ECM by ∼74%. A third MOV experiment was performed in C57BL/6 mice intramuscularly injected with either AAV9-scrambled (control) or AAV9-VIM-shRNA. Although VIM-shRNA mice possessed lower VIM in the ECM (∼45%), plantaris masses in response to MOV were similar between groups. However, VIM-shRNA mice possessed smaller and more centrally nucleated MyHCemb-positive fibers in response to MOV. In summary, skeletal muscle VIM appears to be enriched in the ECM following MOV, satellite cells may regulate its expression, and a disruption in expression during MOV leads to an excessive regenerative phenotype.NEW & NOTEWORTHY Our highly integrative approach suggests that skeletal muscle vimentin seems to function as a mechanosensitive protein that becomes enriched in the extracellular matrix following MOV. Satellite cells may play a role in regulating their expression, and an exaggerated regenerative response occurs when vimentin expression becomes dysregulated during mechanical overload. Although these data implicate vimentin in aiding with tissue remodeling following MOV, more data are needed to determine the functional ramifications of VIM response deficiencies.
Collapse
Affiliation(s)
- Joshua S Godwin
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - J Max Michel
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Andreas N Kavazis
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Christopher S Fry
- Department of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, Kentucky, United States
| | - Andrew D Frugé
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
- College of Nursing, Auburn University, Auburn, Alabama, United States
| | - Mariah McCashland
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, United States
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, United States
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - C Brooks Mobley
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Michael D Roberts
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| |
Collapse
|
3
|
Wang X, Chen C, Li C, Chen X, Xu R, Chen M, Li Y, Liu Y, Liu X, Chen Y, Mo D. Integrating spatial transcriptomics and single-nucleus RNA-seq revealed the specific inhibitory effects of TGF-β on intramuscular fat deposition. SCIENCE CHINA. LIFE SCIENCES 2025; 68:746-763. [PMID: 39422812 DOI: 10.1007/s11427-024-2696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Intramuscular fat (IMF) is a complex adipose tissue within skeletal muscle, appearing specially tissue heterogeneous, and the factors influencing its formation remain unclear. In conditions such as diabetes, aging, and muscle wasting, IMF was deposited in abnormal locations in skeletal muscle, damaged the normal physiological functions of skeletal muscle. Here, we used Longissimus dorsi muscles from pigs with different IMF contents as samples and adopted a method combining spatial transcriptome (ST) and single-nucleus RNA-seq to identify the spatial heterogeneity of IMF. ST revealed that genes involved in TGF-β signaling pathways were specifically highly enriched in IMF. In lean pigs, IMF autocrine produces more TGF-β2, while in obese pigs, IMF received more endothelial-derived TGF-β1. In vitro experiments have proven that porcine endothelial cells in a simulated high-fat environment released more TGF-β1 than TGF-β2. Moreover, under obesity mice, the addition of TGF-β after muscle injury abolished IMF production and slowed muscle repair, whereas TGF-β inhibition accelerated muscle repair. Our findings demonstrate that the TGF-β pathway specifically regulates these processes, suggesting it as a potential therapeutic target for managing muscle atrophy in obese patients and enhancing muscle repair while reducing IMF deposition.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuchu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chenggan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaochang Chen
- Shaanxi Basic and Clinical Translational Research Team for Atherosclerotic Cardiovascular Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yongpeng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yihao Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Hogarth MW, Kurukunda MP, Ismat K, Uapinyoying P, Jaiswal JK. Exploring the therapeutic potential of fibroadipogenic progenitors in muscle disease. J Neuromuscul Dis 2025; 12:22143602241298545. [PMID: 39973455 PMCID: PMC11949306 DOI: 10.1177/22143602241298545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Skeletal muscle relies on its inherent self-repair ability to withstand continuous mechanical damage. Myofiber-intrinsic processes facilitate the repair of damage to sarcolemma and sarcomeres, but it is the coordinated interaction between muscle-resident satellite and stromal cells that are crucial in the regeneration of muscles to replace the lost muscle fibers. Fibroadipogenic progenitors (FAPs), are muscle-resident mesenchymal cells that are notable for their role in creating the dynamic stromal niche required to support long-term muscle homeostasis and regeneration. While FAP-mediated extracellular matrix formation and the establishment of a homeostatic muscle niche are essential for maintaining muscle health, excessive accumulation of FAPs and their aberrant differentiation leads to the fibrofatty degeneration that is a hallmark of myopathies and muscular dystrophies. Recent advancements, including single-cell RNA sequencing and in vivo analysis of FAPs, are providing deeper insights into the functions and specialization of FAPs, shedding light on their roles in both health and disease. This review will explore the above insights, discussing how FAP dysregulation contributes to muscle diseases. It will offer a concise overview of potential therapeutic interventions targeting FAPs to restore disrupted interactions among FAPs and muscle-resident cells, ultimately addressing degenerative muscle loss in neuromuscular diseases.
Collapse
Affiliation(s)
- Marshall W Hogarth
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Medha P Kurukunda
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Karim Ismat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Prech Uapinyoying
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, U.S.A
| |
Collapse
|
5
|
Loreti M, Cecchini A, Kaufman CD, Stamenkovic C, Renero A, Nicoletti C, Kervadec A, Guarnaccia G, Mayer D, Colas A, Lorenzo Puri P, Sacco A. Tenascin-C from the tissue microenvironment promotes muscle stem cell self-renewal through Annexin A2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620732. [PMID: 39554125 PMCID: PMC11565721 DOI: 10.1101/2024.10.29.620732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Skeletal muscle tissue self-repair occurs through the finely timed activation of resident muscle stem cells (MuSC). Following perturbation, MuSC exit quiescence, undergo myogenic commitment, and differentiate to regenerate the injured muscle. This process is coordinated by signals present in the tissue microenvironment, however the precise mechanisms by which the microenvironment regulates MuSC activation are still poorly understood. Here, we identified Tenascin-C (TnC), an extracellular matrix (ECM) glycoprotein, as a key player in promoting of MuSC self-renewal and function. We show that fibro-adipogenic progenitors (FAPs) are the primary cellular source of TnC during muscle repair, and that MuSC sense TnC signaling through cell the surface receptor Annexin A2. We provide in vivo evidence that TnC is required for efficient muscle repair, as mice lacking TnC exhibit a regeneration phenotype of premature aging. We propose that the decline of TnC in physiological aging contributes to inefficient muscle regeneration in aged muscle. Taken together, our results highlight the pivotal role of TnC signaling during muscle repair in healthy and aging skeletal muscle.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: J&J, 3880 Murphy Canyon Rd, San Diego, CA 92123, USA
| | - Alessandra Cecchini
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Collin D. Kaufman
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alma Renero
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anais Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Gabriele Guarnaccia
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Daphne Mayer
- Rice University, 6100 Main St, Huston, TX 77005, USA
| | - Alexandre Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Kurosawa T, Ikemoto‐Uezumi M, Yoshimoto Y, Minato K, Kaji N, Chaen T, Hase E, Minamikawa T, Yasui T, Horiguchi K, Iino S, Hori M, Uezumi A. Tissue-specific functions of MSCs are linked to homeostatic muscle maintenance and alter with aging. Aging Cell 2024; 23:e14299. [PMID: 39323233 PMCID: PMC11561651 DOI: 10.1111/acel.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 09/27/2024] Open
Abstract
Mesenchymal stromal cells (MSCs), also known as fibro-adipogenic progenitors, play a critical role in muscle maintenance and sarcopenia development. Although analogous MSCs are present in various tissues, recent single-cell RNA-seq studies have revealed the inter-tissue heterogeneity of MSCs. However, the functional significance of MSC heterogeneity and its role in aging remain unclear. Here, we investigated the properties of MSCs and their age-related changes in seven mouse tissues through histological, cell culture, and genetic examinations. The tissue of origin had a greater impact on the MSC transcriptome than aging. By first analyzing age-related changes, we found that Kera is exclusively expressed in muscle MSCs and significantly down-regulated by aging. Kera knockout mice recapitulated some sarcopenic phenotypes including reduced muscle mass and specific force, revealing the functional importance of Kera in the maintenance of muscle youth. These results suggest that MSCs have tissue-specific supportive functions and that deterioration in these functions may trigger tissue aging.
Collapse
Affiliation(s)
- Tamaki Kurosawa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life SciencesTokyo UniversityBunkyo‐kuTokyoJapan
| | - Madoka Ikemoto‐Uezumi
- Division of Cell Heterogeneity, Medical Research Center for High Depth Omics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityBunkyo‐kuTokyoJapan
| | - Keitaro Minato
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary MedicineAzabu UniversitySagamiharaKanagawaJapan
| | - Takashi Chaen
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life SciencesTokyo UniversityBunkyo‐kuTokyoJapan
| | - Eiji Hase
- Division of Interdisciplinary Researches for Medicine and PhotonicsInstitute of Post‐LED Photonics, Tokushima UniversityTokushimaJapan
| | - Takeo Minamikawa
- Division of Interdisciplinary Researches for Medicine and PhotonicsInstitute of Post‐LED Photonics, Tokushima UniversityTokushimaJapan
| | - Takeshi Yasui
- Division of Next‐Generation PhotonicsInstitute of Post‐LED Photonics, Tokushima UniversityTokushimaJapan
| | - Kazuhide Horiguchi
- School of Health Sciences at OdawaraInternational University of Health and WelfareOdawaraKanagawaJapan
| | - Satoshi Iino
- Department of Anatomy, Division of Medicine, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Masatoshi Hori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life SciencesTokyo UniversityBunkyo‐kuTokyoJapan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Research Center for High Depth Omics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
7
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
8
|
Bolduc V, Guirguis F, Lubben B, Trank L, Silverstein S, Brull A, Nalls M, Cheng J, Garrett L, Bönnemann CG. A humanized knock-in Col6a1 mouse recapitulates a deep-intronic splice-activating variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.581572. [PMID: 38585878 PMCID: PMC10996637 DOI: 10.1101/2024.03.21.581572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Antisense therapeutics such as splice-modulating antisense oligonucleotides (ASOs) are promising tools to treat diseases caused by splice-altering intronic variants. However, their testing in animal models is hampered by the generally poor sequence conservation of the intervening sequences between human and other species. Here we aimed to model in the mouse a recurrent, deep-intronic, splice-activating, COL6A1 variant, associated with a severe form of Collagen VI-related muscular dystrophies (COL6-RDs), for the purpose of testing human-ready antisense therapeutics in vivo. The variant, c.930+189C>T, creates a donor splice site and inserts a 72-nt-long pseudoexon, which, when translated, acts in a dominant-negative manner, but which can be skipped with ASOs. We created a unique humanized mouse allele (designated as "h"), in which a 1.9 kb of the mouse genomic region encoding the amino-terminus (N-) of the triple helical (TH) domain of collagen a1(VI) was swapped for the human orthologous sequence. In addition, we also created an allele that carries the c.930+189C>T variant on the same humanized knock-in sequence (designated as "h+189T"). We show that in both models, the human exons are spliced seamlessly with the mouse exons to generate a chimeric mouse-human collagen a1(VI) protein. In homozygous Col6a1 h+189T/h+189T mice, the pseudoexon is expressed at levels comparable to those observed in heterozygous patients' muscle biopsies. While Col6a1h/h mice do not show any phenotype compared to wildtype animals, Col6a1 h/h+189T and Col6a1 h+189T/h+189T mice have smaller muscle masses and display grip strength deficits detectable as early as 4 weeks of age. The pathogenic h+189T humanized knock-in mouse allele thus recapitulates the pathogenic splicing defects seen in patients' biopsies and allows testing of human-ready precision antisense therapeutics aimed at skipping the pseudoexon. Given that the COL6A1 N-TH region is a hot-spot for COL6-RD variants, the humanized knock-in mouse model can be utilized as a template to introduce other COL6A1 pathogenic variants. This unique humanized mouse model thus represents a valuable tool for the development of antisense therapeutics for COL6-RDs.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Fady Guirguis
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Berit Lubben
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Lindsey Trank
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Astrid Brull
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Jun Cheng
- NHGRI Transgenic and Gene Editing Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lisa Garrett
- NHGRI Transgenic and Gene Editing Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|