1
|
Kumar S, del Moral-Sánchez I, Singh S, Newby ML, Allen JD, Bijl TPL, Vaghani Y, Jing L, Lodha R, Ortlund EA, Crispin M, Patel A, Sanders RW, Luthra K. The Design and Immunogenicity of an HIV-1 Clade C Pediatric Envelope Glycoprotein Stabilized by Multiple Platforms. Vaccines (Basel) 2025; 13:110. [PMID: 40006657 PMCID: PMC11860714 DOI: 10.3390/vaccines13020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Elite-neutralizer-derived HIV-1 envelopes (Envs), which induce broadly neutralizing antibodies (bnAbs), can inform HIV-1 vaccine design by serving as templates for bnAb-eliciting vaccines. Since single Env-based immunizations are insufficient to induce bnAb responses, sequential regimens using multivalent immunogens or Env cocktails hold greater promise. This underscores the need to develop stable Env trimers from diverse HIV-1 strains, particularly clade-C, which accounts for 50% of global infections and over 90% in India and South Africa. While various platforms exist to stabilize soluble Env trimers for use as antigenic baits and vaccines, stabilizing clade C trimers remains challenging. METHODS We stabilized an HIV-1 clade C trimer based on an Env isolated from a pediatric elite neutralizer (AIIMS_329) using multiple platforms, including SOSIP.v8.2, ferritin nanoparticles (NPs) and I53-50 two-component NPs, followed by characterization of their biophysical, antigenic, and immunogenic properties. RESULTS The stabilized 329 Envs showed binding to multiple HIV-1 bnAbs, with negligible binding to non-neutralizing antibodies. Negative-stain electron microscopy confirmed the native-like conformation of the Envs. Multimerization of 329 SOSIP.v8.2 on ferritin and two-component I53-50 NPs improved the affinity to HIV-1 bnAbs and showed higher immunogenicity in rabbits. CONCLUSIONS The soluble 329 Env protein could serve as an antigenic bait, and multimeric 329 NP Envs are potential vaccine candidates.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.K.); (I.d.M.-S.); (T.P.L.B.)
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
- Department of Pediatrics, Division of Infectious Diseases, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Iván del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.K.); (I.d.M.-S.); (T.P.L.B.)
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (M.L.N.); (J.D.A.); (M.C.)
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (M.L.N.); (J.D.A.); (M.C.)
| | - Tom P. L. Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.K.); (I.d.M.-S.); (T.P.L.B.)
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Yog Vaghani
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.V.); (L.J.); (E.A.O.); (A.P.)
| | - Liang Jing
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.V.); (L.J.); (E.A.O.); (A.P.)
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.V.); (L.J.); (E.A.O.); (A.P.)
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (M.L.N.); (J.D.A.); (M.C.)
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.V.); (L.J.); (E.A.O.); (A.P.)
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.K.); (I.d.M.-S.); (T.P.L.B.)
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| |
Collapse
|
2
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Kumar S, Bajpai P, Joyce C, Kabra SK, Lodha R, Burton DR, Briney B, Luthra K. B cell repertoire sequencing of HIV-1 pediatric elite-neutralizers identifies multiple broadly neutralizing antibody clonotypes. Front Immunol 2024; 15:1272493. [PMID: 38433846 PMCID: PMC10905035 DOI: 10.3389/fimmu.2024.1272493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction A limited subset of HIV-1 infected adult individuals typically after at least 2-3 years of chronic infection, develop broadly neutralizing antibodies (bnAbs), suggesting that highly conserved neutralizing epitopes on the HIV-1 envelope glycoprotein are difficult for B cell receptors to effectively target, during natural infection. Recent studies have shown the evolution of bnAbs in HIV-1 infected infants. Methods We used bulk BCR sequencing (BCR-seq) to profile the B cell receptors from longitudinal samples (3 time points) collected from a rare pair of antiretroviralnaïve, HIV-1 infected pediatric monozygotic twins (AIIMS_329 and AIIMS_330) who displayed elite plasma neutralizing activity against HIV-1. Results BCR-seq of both twins revealed convergent antibody characteristics including V-gene use, CDRH3 lengths and somatic hypermutation (SHM). Further, antibody clonotypes with genetic features similar to highly potent bnAbs isolated from adults showed ongoing development in donor AIIMS_330 but not in AIIMS_329, corroborating our earlier findings based on plasma bnAbs responses. An increase in SHM was observed in sequences of the IgA isotype from AIIMS_330. Discussion This study suggests that children living with chronic HIV-1 can develop clonotypes of HIV-1 bnAbs against multiple envelope epitopes similar to those isolated from adults, highlighting that such B cells could be steered to elicit bnAbs responses through vaccines aimed to induce bnAbs against HIV-1 in a broad range of people including children.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Prashant Bajpai
- International Centre for Genetic Engineering and Biotechnology (ICGEB)-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, United States
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|