1
|
Joo EH, Altier HR, Selai C, Gratton MK, Kim-Dahl A, Allen H, Cheng X, Reid MJ. Neurobiological mechanisms of sleep state misperception in insomnia disorder: A theoretical review. Sleep Med Rev 2025; 81:102096. [PMID: 40327948 DOI: 10.1016/j.smrv.2025.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
Sleep state misperception is core to pathophysiological models of insomnia, suggesting that it arises from a dysfunction in neurobiological mechanisms which result in sleep being misperceived as wake. The current review aims to synthesise the best available literature on the neurobiological mechanisms of sleep state misperception and the extent to which the existing literature supports this theory. Overall, findings suggest that cognitive and neurophysiological hyperarousal and dysfunctional sensory-gating mechanisms that insufficiently inhibit arousal may largely account for the phenomenon of sleep state misperception observed among patients with paradoxical insomnia. Most studies to date, however, have relied on comparing self-reports of sleep duration with polysomnography-derived sleep duration, limiting our ability to differentiate the effects of perception from retrospective-reporting bias. Therefore, more studies which use contemporaneous assessments of sleep-wake perception are required to directly test the hypothesis that subjective-objective discrepancies arise from altered perception of sleep states. We report here a research agenda to promote the further development of research in the field and propose several key empirical questions which remain to be explored.
Collapse
Affiliation(s)
- Eric H Joo
- University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Heather R Altier
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Caroline Selai
- University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew K Gratton
- Department of Psychology, College of Liberal Arts & Sciences, University of Kansas, Lawrence, KS, USA
| | - Anna Kim-Dahl
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Heavon Allen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xinrong Cheng
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Ye X, Pang S, Ren X, Wang H, Chen M. Neurotransmitter modulation of sleep-wake States: From molecular mechanisms to therapeutic potential. Sleep Med 2025; 132:106547. [PMID: 40359849 DOI: 10.1016/j.sleep.2025.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Sleep is one of the most fundamental physiological activities in humans and animals, and a normal sleep cycle is crucial for maintaining overall health. However, sleep disorders are increasingly becoming a major mental health issue affecting individuals and society, as well as a contributing factor to the onset of other diseases. Consequently, the development of novel therapeutic strategies for sleep disorders has emerged as a significant scientific challenge garnering widespread attention. Based on current research findings, focusing on neurotransmitters remains a promising approach for developing effective treatments. Neurotransmitters play a central role in regulating the sleep-wake cycle by precisely modulating the activity states of different brain regions. This review aims to elucidate the neural mechanisms underlying sleep initiation and function, thereby providing a comprehensive understanding of the complex nature of sleep as a physiological process. Furthermore, it seeks to uncover the potential pathological mechanisms of sleep disorders, offering a theoretical foundation and novel insights for precision medicine and drug development, ultimately reducing the negative impact of sleep disorders on individuals and society.
Collapse
Affiliation(s)
- Xinyi Ye
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Xiaoliang Ren
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hui Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Meiling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Foustoukos G, Lüthi A. Monoaminergic signaling during mammalian NREM sleep - Recent insights and next-level questions. Curr Opin Neurobiol 2025; 92:103025. [PMID: 40267623 DOI: 10.1016/j.conb.2025.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Subcortical neuromodulatory activity in the mammalian brain enables flexible wake behaviors, which are essential for survival in an ever-changing external environment. With the suppression of such behaviors in sleep, this activity is, on average, much reduced. Recent discoveries, enabled by unprecedented technical advancements, challenge the long-standing view that monoaminergic systems-noradrenaline (NA), dopamine (DA), and serotonin (5-HT)-remain largely inactive during sleep. This review highlights recent technological and scientific progress in this field, summarizing evidence that monoaminergic signaling in the brain supplements sleep with essential wake-related functions. Stress and/or neuropsychiatric conditions negatively impact on monoaminergic signaling, which can lead to sleep disruptions. Furthermore, subcortical neuromodulatory systems are vulnerable to neurodegenerative pathologies, which implies them in sleep disruptions at early stages of disease. We propose that future research will be well-invested in elucidating the spatiotemporal organization, cellular mechanisms, and functional relevance of neuromodulatory dynamics across species, and in identifying the molecular and physiological processes that sustain their integrity throughout the lifespan.
Collapse
Affiliation(s)
- Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, CH, Switzerland.
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, CH, Switzerland.
| |
Collapse
|
4
|
Toth BA, Burgess CR. Phasic Dopamine Release in the Nucleus Accumbens Influences REM Sleep Timing. J Neurosci 2025; 45:e1374242024. [PMID: 39794128 PMCID: PMC11867001 DOI: 10.1523/jneurosci.1374-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
Based on the activity of dopamine (DA) neurons during behavioral states, the DA system has long been thought to be foundational in regulating sleep-wake behavior; over the past decade, advances in circuit manipulation and recording techniques have strengthened this perspective. Recently, several studies have demonstrated that DA release in regions of the limbic system is important in the promotion of REM sleep. Yet how DA dynamics change within bouts of sleep, how these changes are regulated, and whether they influence future state changes remains unclear. To address these questions, in mice of both sexes we used in vivo fiber photometry and inhibitory optogenetics to identify a specific role of DA transients in the nucleus accumbens (NAcc) in state transitions from NREM sleep. We found that DA transients increase their frequency and amplitude over the duration of NREM sleep and that this increase is more pronounced during NREM bouts that transition into REM sleep. Next, we found that DA transients in NREM sleep are influenced by changes in REM sleep pressure. Finally, we show that transient DA release in the NAcc plays a functional role in regulating the timing of REM sleep entrances, as inhibition of midbrain DA neuron terminals in the NAcc prolonged bouts of NREM sleep and decreased the frequency of bouts of REM sleep. These findings demonstrate that DA release in the NAcc is dynamically regulated by sleep pressure and has a functional role in transitions from NREM sleep, particularly those into REM sleep.
Collapse
Affiliation(s)
- Brandon A Toth
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Yeh WC, Li YS, Chang YP, Hsu CY. Dopamine agonists in restless leg syndrome treatment and their effects on sleep parameters: A systematic review and meta-analysis. Sleep Med 2024; 119:379-388. [PMID: 38761607 DOI: 10.1016/j.sleep.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Dopamine agonists (DAs) constitute the standard therapeutic scheme for restless leg syndrome (RLS) because they have been proven to be effective. However, DAs may change sleep parameters, thus having adverse effects on patient condition. This meta-analysis clarified the effects of DAs used in RLS treatment on the sleep architecture. METHODS PubMed, Embase, and Cochrane Central databases were searched for randomized control trials (RCT) (up to October 2023) that discussed the effects of DAs on sleep architecture in patients with RLS. A meta-analysis employing a random-effects model was conducted. The patients were divided into subgroups according to individual DAs and treatment duration (1 day or ≥4 weeks). RESULTS Thirteen eligible randomized placebo-controlled trials were included in the assessment. The effects of three DAs (i.e., pramipexole, ropinirole, and rotigotine) on rapid eye movement (REM) sleep, slow-wave sleep (SWS), and sleep efficiency (SE) were analyzed. Overall, pramipexole significantly improved SE but decreased the percentage of REM sleep among treated patients. Ropinirole also enhanced SE compared with the placebo group. Rotigotine did not affect SE and REM sleep. Subgroup analysis found that pramipexole used for 1 day and ≥4 weeks significantly diminished the percentage of REM sleep. Ropinirole used for 1 day showed similar REM sleep patterns. Finally, none of the three DAs affected SWS. CONCLUSIONS This meta-analysis demonstrated that DAs significantly affect sleep parameters.
Collapse
Affiliation(s)
- Wei-Chih Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Sheng Li
- Sleep Disorders Center, Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yang-Pei Chang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yao Hsu
- Sleep Disorders Center, Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Dautan D, Paslawski W, Montejo SG, Doyon DC, Marangiu R, Kaplitt MG, Chen R, Dawson VL, Zhang X, Dawson TM, Svenningsson P. Gut-Initiated Alpha Synuclein Fibrils Drive Parkinson's Disease Phenotypes: Temporal Mapping of non-Motor Symptoms and REM Sleep Behavior Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590542. [PMID: 38712208 PMCID: PMC11071367 DOI: 10.1101/2024.04.22.590542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Parkinson's disease (PD) is characterized by progressive motor as well as less recognized non-motor symptoms that arise often years before motor manifestation, including sleep and gastrointestinal disturbances. Despite the heavy burden on the patient's quality of life, these non-motor manifestations are poorly understood. To elucidate the temporal dynamics of the disease, we employed a mouse model involving injection of alpha-synuclein (αSyn) pre-formed fibrils (PFF) in the duodenum and antrum as a gut-brain model of Parkinsonism. Using anatomical mapping of αSyn-PFF propagation and behavioral and physiological characterizations, we unveil a correlation between post-injection time the temporal dynamics of αSyn propagation and non-motor/motor manifestations of the disease. We highlight the concurrent presence of αSyn aggregates in key brain regions, expressing acetylcholine or dopamine, involved in sleep duration, wakefulness, and particularly REM-associated atonia corresponding to REM behavioral disorder-like symptoms. This study presents a novel and in-depth exploration into the multifaceted nature of PD, unraveling the complex connections between α-synucleinopathies, gut-brain connectivity, and the emergence of non-motor phenotypes.
Collapse
Affiliation(s)
- Daniel Dautan
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sergio G. Montejo
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Daniel C. Doyon
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Roberta Marangiu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Division of Neurosurgery, Department of Neurosurgery, New-York Hospital-Cornell Medical College, New York, NY, USA
| | - Michael G. Kaplitt
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Division of Neurosurgery, Department of Neurosurgery, New-York Hospital-Cornell Medical College, New York, NY, USA
| | - Rong Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valina L. Dawson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaoaun Zhang
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ted M. Dawson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
7
|
Melugin PR, Nolan SO, Kandov E, Ferrara CF, Farahbakhsh ZZ, Siciliano CA. Medial prefrontal dopamine dynamics reflect allocation of selective attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583245. [PMID: 38496533 PMCID: PMC10942305 DOI: 10.1101/2024.03.04.583245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The mesocortical dopamine system is comprised of midbrain dopamine neurons that predominantly innervate the medial prefrontal cortex (mPFC) and exert a powerful neuromodulatory influence over this region 1,2 . mPFC dopamine activity is thought to be critical for fundamental neurobiological processes including valence coding and decision-making 3,4 . Despite enduring interest in this pathway, the stimuli and conditions that engage mPFC dopamine release have remained enigmatic due to inherent limitations in conventional methods for dopamine monitoring which have prevented real-time in vivo observation 5 . Here, using a fluorescent dopamine sensor enabling time-resolved recordings of cortical dopamine activity in freely behaving mice, we reveal the coding properties of this system and demonstrate that mPFC dopamine dynamics conform to a selective attention signal. Contrary to the long-standing theory that mPFC dopamine release preferentially encodes aversive and stressful events 6-8 , we observed robust dopamine responses to both appetitive and aversive stimuli which dissipated with increasing familiarity irrespective of stimulus intensity. We found that mPFC dopamine does not evolve as a function of learning but displays striking temporal precedence with second-to-second changes in behavioral engagement, suggesting a role in allocation of attentional resources. Systematic manipulation of attentional demand revealed that quieting of mPFC dopamine signals the allocation of attentional resources towards an expected event which, upon detection triggers a sharp dopamine transient marking the transition from decision-making to action. The proposed role of mPFC dopamine as a selective attention signal is the first model based on direct observation of time-resolved dopamine dynamics and reconciles decades of competing theories.
Collapse
|