1
|
Hong J, Lu S, Shan G, Yang Y, Li B, Yang D. Application and Progression of Single-Cell RNA Sequencing in Diabetes Mellitus and Diabetes Complications. J Diabetes Res 2025; 2025:3248350. [PMID: 40135071 PMCID: PMC11936531 DOI: 10.1155/jdr/3248350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Diabetes is a systemic metabolic disorder primarily caused by insulin deficiency and insulin resistance, leading to chronic hyperglycemia. Prolonged diabetes can result in metabolic damage to multiple organs, including the heart, brain, liver, muscles, and adipose tissue, thereby causing various chronic fatal complications such as diabetic retinopathy, diabetic cardiomyopathy, and diabetic nephropathy. Single-cell RNA sequencing (scRNA-seq) has emerged as a valuable tool for investigating the cell diversity and pathogenesis of diabetes and identifying potential therapeutic targets in diabetes or diabetes complications. This review provides a comprehensive overview of recent applications of scRNA-seq in diabetes-related researches and highlights novel biomarkers and immunotherapy targets with cell-type information for diabetes and its associated complications.
Collapse
Affiliation(s)
- Jiajing Hong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Shiqi Lu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Guohui Shan
- Department of Endocrinology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yaoran Yang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Bailin Li
- Medical Quality Monitoring Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Dongyu Yang
- Center of Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Chatham JC, Wende AR. The role of protein O-GlcNAcylation in diabetic cardiomyopathy. Biochem Soc Trans 2024; 52:2343-2358. [PMID: 39601777 DOI: 10.1042/bst20240262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
It is well established that diabetes markedly increases the risk of multiple types of heart disease including heart failure. However, despite substantial improvements in the treatment of heart failure in recent decades the relative increased risk associated with diabetes remains unchanged. There is increasing appreciation of the importance of the post translational modification by O-linked-N-acetylglucosamine (O-GlcNAc) of serine and threonine residues on proteins in regulating cardiomyocyte function and mediating stress responses. In response to diabetes there is a sustained increase in cardiac O-GlcNAc levels, which has been attributed to many of the adverse effects of diabetes on the heart. Here we provide an overview of potential mechanisms by which increased cardiac O-GlcNAcylation contributes to the adverse effects on the heart and highlight some of the key gaps in our knowledge.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
3
|
Tuleta I, Hanna A, Humeres C, Aguilan JT, Sidoli S, Zhu F, Frangogiannis NG. Fibroblast-specific TGF-β signaling mediates cardiac dysfunction, fibrosis, and hypertrophy in obese diabetic mice. Cardiovasc Res 2024; 120:2047-2063. [PMID: 39373248 PMCID: PMC12097992 DOI: 10.1093/cvr/cvae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 10/08/2024] Open
Abstract
AIMS Transforming growth factor (TGF)-β is up-regulated in the diabetic myocardium and may mediate fibroblast activation. We aimed at examining the role of TGF-β-induced fibroblast activation in the pathogenesis of diabetic cardiomyopathy. METHODS AND RESULTS We generated lean and obese db/db mice with fibroblast-specific loss of TbR2, the Type 2 receptor-mediating signaling through all three TGF-β isoforms, and mice with fibroblast-specific Smad3 disruption. Systolic and diastolic function, myocardial fibrosis, and hypertrophy were assessed. Transcriptomic studies and in vitro experiments were used to dissect mechanisms of fibroblast activation. Fibroblast-specific TbR2 loss attenuated systolic and diastolic dysfunction in db/db mice. The protective effects of fibroblast TbR2 loss in db/db mice were associated with attenuated fibrosis and reduced cardiomyocyte hypertrophy, suggesting that in addition to their role in fibrous tissue deposition, TGF-β-stimulated fibroblasts may also exert paracrine actions on cardiomyocytes. Fibroblast-specific Smad3 loss phenocopied the protective effects of fibroblast TbR2 loss in db/db mice. Db/db fibroblasts had increased expression of genes associated with oxidative response (such as Fmo2, encoding flavin-containing monooxygenase 2), matricellular genes (such as Thbs4 and Fbln2), and Lox (encoding lysyl oxidase). Ingenuity pathway analysis (IPA) predicted that neurohumoral mediators, cytokines, and growth factors (such as AGT, TGFB1, and TNF) may serve as important upstream regulators of the transcriptomic profile of diabetic mouse fibroblasts. IPA of scRNA-seq data identified TGFB1, p53, MYC, PDGF-BB, EGFR, and WNT3A/CTNNB1 as important upstream regulators underlying fibroblast activation in db/db hearts. Comparison of the transcriptome of fibroblasts from db/db mice with fibroblast-specific Smad3 loss and db/db Smad3 fl/fl controls identified Thbs4 [encoding thrombospondin-4 (TSP-4), a marker of activated fibroblasts] as a candidate diabetes-induced fibrogenic mediator. However, in vitro experiments showed no significant activating effects of matricellular or intracellular TSP-4 on cardiac fibroblasts. CONCLUSION Fibroblast-specific TGF-β/Smad3 signaling mediates ventricular fibrosis, hypertrophy, and dysfunction in Type 2 diabetes.
Collapse
MESH Headings
- Animals
- Fibrosis
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Signal Transduction
- Transforming Growth Factor beta/metabolism
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/etiology
- Obesity/metabolism
- Obesity/physiopathology
- Obesity/genetics
- Obesity/pathology
- Cells, Cultured
- Ventricular Function, Left
- Mice, Inbred C57BL
- Smad3 Protein/metabolism
- Smad3 Protein/genetics
- Disease Models, Animal
- Ventricular Remodeling
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/pathology
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cardiomegaly/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/genetics
- Mice, Knockout
- Paracrine Communication
Collapse
Affiliation(s)
- Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Fenglan Zhu
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
5
|
Nie W, Zhao Z, Liu Y, Wang Y, Zhang J, Hu Y, Liu Y, Wang Y, Wang Z. Integrative Single-Cell Analysis of Cardiomyopathy Identifies Differences in Cell Stemness and Transcriptional Regulatory Networks among Fibroblast Subpopulations. Cardiol Res Pract 2024; 2024:3131633. [PMID: 38799173 PMCID: PMC11127766 DOI: 10.1155/2024/3131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cardiomyopathy encompasses a broad spectrum of diseases affecting myocardial tissue, characterized clinically by abnormalities in cardiac structure, heart failure, and/or arrhythmias. Clinically heterogeneous, major types include dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RM), ischemic cardiomyopathy (ICM), among which DCM is more prevalent, while ICM exhibits higher incidence and mortality rates. Myocardial injury during cardiomyopathy progression may lead to myocardial fibrosis. Failure to intervene early and inhibit the process of myocardial fibrosis may culminate in heart failure. Cardiac fibroblasts constitute crucial cellular components determining the extent and quality of myocardial fibrosis, with various subpopulations exerting diverse roles in cardiomyopathy progression. Despite this, understanding of the cellular plasticity and transcriptional regulatory networks of cardiac fibroblasts in cardiomyopathy remains limited. Therefore, in this study, we conducted comprehensive single-cell analysis of cardiac fibroblasts in cardiomyopathy to explore differences in cellular plasticity and transcriptional regulatory networks among fibroblast subpopulations, with the aim of providing as many useful references as possible for the diagnosis, prognosis, and treatment of cardiomyopathy. Materials and Methods Cells with mitochondrial gene expression comprising >20% of total expressed genes were excluded. Differential expression genes (DEGs) and stemness genes within cardiac fibroblast subpopulations were subjected to Gene Ontology (GO) analysis of biological processes (BP) and AUCell analysis. Monocle software was employed to analyze the pseudo-temporal trajectory of cardiac fibroblasts in cardiomyopathy. Additionally, the Python package SCENIC was utilized to assess enrichment of transcription factors and activity of regulators within cardiac fibroblast subpopulations in cardiomyopathy. Results Following batch effect correction, 179,927 cells were clustered into 32 clusters, designated as T_NK cells, endothelial cells, myeloid cells, fibroblasts, pericytes, SMCs, CMs, proliferating cells, EndoCs, and EPCs. Among them, 8148 fibroblasts were further subdivided into 4 subpopulations, namely C0 THBS4+ Fibroblasts, C1 LINC01133+ Fibroblasts, C2 FGF7+ Fibroblasts, and C3 AGT + Fibroblasts. Results from GO_BP and AUCell analyses suggest that C3 AGT + Fibroblasts may be associated with immune response activation, protein transport, and myocardial contractile function, correlating with disease progression in cardiomyopathy. Transcription factor enrichment analysis indicates that FOS is the most significant TF in C3 AGT + Fibroblasts, also associated with the M1 module, possibly implicated in protein hydrolysis, intracellular DNA replication, and cell proliferation. Moreover, correlation analysis of transcriptional regulatory activity between fibroblast subpopulations reveals a more pronounced heterogeneity within C3 AGT + Fibroblasts in cardiomyopathy. Conclusion C3 AGT + Fibroblasts exhibit increased sensitivity towards adverse outcomes in cardiomyopathy, such as myocardial fibrosis and impaired cardiac contractile function, compared to other cardiac fibroblast subpopulations. The differential cellular plasticity and transcriptional regulatory activity between C3 AGT + Fibroblasts and other subgroups offer new perspectives for targeting fibroblast subpopulation activity to treat cardiomyopathy. Additionally, stemness genes EPAS1 and MYC, along with the regulator FOS, may play roles in modulating the biological processes of cardiac fibroblasts in cardiomyopathy.
Collapse
Affiliation(s)
- Wenyang Nie
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai 200011, China
- Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Rd, Shanghai 200025, China
| | - Yuhang Liu
- School of Acupuncture, Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, 4655 University Rd, Jinan 250355, China
| | - Youcao Wang
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Jingwen Zhang
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Ying Hu
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Yang Liu
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Yong Wang
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| | - Zhen Wang
- Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jing 10 Rd, Jinan 250000, China
| |
Collapse
|
6
|
Singh J, Jackson KL, Tang FS, Fu T, Nowell C, Salimova E, Kiriazis H, Ritchie RH, Head GA, Woodman OL, Qin CX. The pro-resolving mediator, annexin A1 regulates blood pressure, and age-associated changes in cardiovascular function and remodeling. FASEB J 2024; 38:e23457. [PMID: 38318648 DOI: 10.1096/fj.202301802r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aging is associated with chronic, low-level inflammation which may contribute to cardiovascular pathologies such as hypertension and atherosclerosis. This chronic inflammation may be opposed by endogenous mechanisms to limit inflammation, for example, by the actions of annexin A1 (ANXA1), an endogenous glucocorticoid-regulated protein that has anti-inflammatory and pro-resolving activity. We hypothesized the pro-resolving mediator ANXA1 protects against age-induced changes in blood pressure (BP), cardiovascular structure and function, and cardiac senescence. BP was measured monthly in conscious mature (4-month) and middle-aged (12-month) ANXA1-deficient (ANXA1-/- ) and wild-type C57BL/6 mice. Body composition was measured using EchoMRI, and both cardiac and vascular function using ultrasound imaging. Cardiac hypertrophy, fibrosis and senescence, vascular fibrosis, elastin, and calcification were assessed histologically. Gene expression relevant to structural remodeling, inflammation, and cardiomyocyte senescence were also quantified. In C57BL/6 mice, progression from 4 to 12 months of age did not affect the majority of cardiovascular parameters measured, with the exception of mild cardiac hypertrophy, vascular calcium, and collagen deposition. Interestingly, ANXA1-/- mice exhibited higher BP, regardless of age. Additionally, age progression had a marked impact in ANXA1-/- mice, with markedly augmented vascular remodeling, impaired vascular distensibility, and body composition. Consistent with vascular dysfunction, cardiac dysfunction, and hypertrophy were also evident, together with markers of senescence and inflammation. These findings suggest that endogenous ANXA1 plays a critical role in regulating BP, cardiovascular function, and remodeling and delays cardiac senescence. Our findings support the development of novel ANXA1-based therapies to prevent age-related cardiovascular pathologies.
Collapse
Affiliation(s)
- Jaideep Singh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Kristy L Jackson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Feng Shii Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ting Fu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey A Head
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Pharmacology, School of Pharmaceutical Sciences, Qilu College of Medicine, Shandong University, Jinan, China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|