1
|
Hu M, Oliveira APBN, Fang Z, Feng Y, Miranda M, Kowli S, Arunachalam PS, Vasudevan G, Hui HSY, Grifoni A, Sette A, Litvack M, Rouphael N, Suthar MS, Ji X, Maecker HT, Hagan T, Dhillon G, Nicolls MR, Pulendran B. Altered baseline immunological state and impaired immune response to SARS-CoV-2 mRNA vaccination in lung transplant recipients. Cell Rep Med 2025; 6:102050. [PMID: 40187358 PMCID: PMC12047491 DOI: 10.1016/j.xcrm.2025.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/08/2024] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
The effectiveness of COVID-19 mRNA vaccines is diminished in organ transplant patients. Using a multi-omics approach, we investigate the immunological state of lung transplant (LTX) recipients at baseline and after SARS-CoV-2 mRNA vaccination compared to healthy controls (HCs). LTX patients exhibit a baseline immune profile resembling severe COVID-19 and sepsis, characterized by elevated pro-inflammatory cytokines (e.g., EN-RAGE [also known as S100A12], interleukin [IL]-6), reduced human leukocyte antigen (HLA)-DR expression on monocytes and dendritic cells, impaired cytokine production, and increased plasma microbial products. Single-cell RNA sequencing identifies an enriched monocyte cluster in LTX patients marked by high S100A family expression and reduced cytokine and antigen presentation genes. Post vaccination, LTX patients show diminished antibody, B cell, and T cell responses, along with blunted innate immune signatures. Integrative analysis links these altered baseline immunological features to impaired vaccine responses. These findings provide critical insights into the immunosuppressed condition of LTX recipients and their reduced vaccine-induced adaptive and innate immune responses.
Collapse
Affiliation(s)
- Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Ana Paula B N Oliveira
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhuoqing Fang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Molly Miranda
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Gowri Vasudevan
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Harold Sai-Yin Hui
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Litvack
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Xuhuai Ji
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gundeep Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Müller T, Dzanibe S, Day C, Mpangase PT, Chimbetete T, Pedretti S, Schwager S, Gray CM, Sturrock E, Peter J. Integrated renin angiotensin system dysregulation and immune profiles predict COVID-19 disease severity in a South African cohort. Sci Rep 2025; 15:12799. [PMID: 40229302 PMCID: PMC11997227 DOI: 10.1038/s41598-025-96161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Renin-angiotensin system (RAS) dysregulation is an important component of the complex pathophysiology of SARS-CoV-2 and other coronavirus infections. Thus, angiotensin-converting enzyme 2 (ACE2), the entry receptor and key to the alternative RAS, was proposed as a severity/prognostic biomarker for risk-stratification. However, experimental RAS data from diverse cohorts are limited, particularly analyses integrating RAS with immune biomarkers. Participants (n = 172) in Cape Town were sampled longitudinally (including a recovery timepoint [> 3-month]), across WHO asymptomatic to critical severity. Using fluorometric assays and LC-MS/MS RAS Fingerprinting®, results show serum ACE1 activity significantly decreases with increasing COVID-19 severity (P < 0.01) and mortality (P < 0.05), while increased ACE2 activity is associated with worse severity (P < 0.01). Neither enzyme activity correlates with viral load proxy or nasal ACE mRNA levels. ACE1 and ACE2 activities were the most effective severity biomarkers compared to 96 established immune markers obtained via proximity extension assay, as demonstrated by principal component analysis. A multivariate variable selection model using random forest classification identified biomarkers discriminating COVID-19 severity (AUC = 0.82), the strongest being HGF, EN-RAGE, cathepsin L. Adding ACE1 activity and anti-SARS-CoV-2 antibody titres improved differentiation between ambulatory and hospitalised participants. Notably, RAS dysregulation has unique severity associations in coronavirus infections with implications for treatment and pathophysiological mechanisms.
Collapse
Affiliation(s)
- Talitha Müller
- Division of Allergology and Clinical Immunology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sonwabile Dzanibe
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Cascia Day
- Division of Allergology and Clinical Immunology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Phelelani Thokozani Mpangase
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Tafadzwa Chimbetete
- Division of Allergology and Clinical Immunology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sylva Schwager
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Clive M Gray
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Edward Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonny Peter
- Division of Allergology and Clinical Immunology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa.
| |
Collapse
|
3
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
4
|
Leno-Duran E, Serrano-Conde E, Salas-Rodríguez A, Salcedo-Bellido I, Barrios-Rodríguez R, Fuentes A, Viñuela L, García F, Requena P. Evaluation of inflammatory biomarkers and their association with anti-SARS-CoV-2 antibody titers in healthcare workers vaccinated with BNT162B2. Front Immunol 2024; 15:1447317. [PMID: 39247198 PMCID: PMC11377239 DOI: 10.3389/fimmu.2024.1447317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Vaccine-induced immunity against COVID-19 generates antibody and lymphocyte responses. However, variability in antibody titers has been observed after vaccination, and the determinants of a better response should be studied. The main objective of this investigation was to analyze the inflammatory biomarker response induced in healthcare workers vaccinated with BNT162b2, and its association with anti-Spike (a SARS-CoV-2 antigen) antibodies measured throughout a 1-year follow-up. Methods Anti-spike antibodies and 92 biomarkers were analyzed in serum, along with socio-demographic and clinical variables collected by interview or exploration. Results In our study, four biomarkers (ADA, IL-17C, CCL25 and CD8α) increased their expression after the first vaccine dose; and 8 others (uPA, IL-18R1, EN-RAGE, CASP-8, MCP-2, TNFβ, CD5 and CXCL10) decreased their expression. Age, body mass index (BMI), smoking, alcohol consumption, and prevalent diseases were associated with some of these biomarkers. Furthermore, higher baseline levels of T-cell surface glycoprotein CD6 and hepatocyte growth factor (HGF) were associated with lower mean antibody titers at follow-up, while levels of monocyte chemotactic protein 2 (MCP-2) had a positive association with antibody levels. Age and BMI were positively related to baseline levels of MCP-2 (β=0.02, 95%CI 0.00-0.04, p=0.036) and HGF (β=0.03, 95%CI 0.00-0.06, p=0.039), respectively. Conclusion Our findings indicate that primary BNT162b2 vaccination had a positive effect on the levels of several biomarkers related to T cell function, and a negative one on some others related to cancer or inflammatory processes. In addition, a higher level of MCP-2 and lower levels of HGF and CD6 were found to be associated with higher anti-Spike antibody titer following vaccination.
Collapse
Affiliation(s)
- Ester Leno-Duran
- Universidad de Granada, Departamento de Obstetricia y Ginecología, Granada, Spain
| | - Esther Serrano-Conde
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Ana Salas-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Fuentes
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Viñuela
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|