1
|
Piscoiu DN, Rada S, Vermesan H. Enhancing Electrochemical Properties of Vitreous Materials Based on CaO-Fe 2O 3-Fe-Pb and Recycled from Anodic Plate of a Spent Car Battery. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2017. [PMID: 40363519 PMCID: PMC12072264 DOI: 10.3390/ma18092017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
This paper presents a novel approach for the recycling of spent anodic plates from lead-acid batteries through the melt quenching method using iron and calcium oxides and iron powder. The resulting recycled samples, with a 3CaO·5Fe2O3·xFe·(92 - x)Pb composition, where x = 0, 1, 3, 5, 8, 10, 15, and 25% mol Fe, were characterized and analyzed in terms of their electrochemical performance. X-ray diffractograms show vitroceramic structures with varied crystalline phases. Analysis of the IR (infrared spectra) data shows a decrease of sulphate units due to doping with iron content. The ultraviolet-visible (UV-Vis) and electron spin resonance (ESR) data reveal the presence of Fe3+ ions with varied coordination geometries. Cyclic and linear sweep voltammograms demonstrate that the samples with 8 and 10% Fe exhibit superior electrochemical performance compared to other vitroceramics. The electrochemical impedance spectroscopy measurements indicate that the sample with 8% Fe had lower resistance compared to other analogues and had enhanced electrical conductivity.
Collapse
Affiliation(s)
- Delia Niculina Piscoiu
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (D.N.P.); (H.V.)
| | - Simona Rada
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (D.N.P.); (H.V.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Horatiu Vermesan
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (D.N.P.); (H.V.)
| |
Collapse
|
2
|
Morell J, Ribas D, Tristany I, Guimerà X, Dorado AD. Metal recovery in mobile phone waste: Characterization of metal composition and economic assessment through shredding and screening processes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 196:93-105. [PMID: 39985920 DOI: 10.1016/j.wasman.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
Recycling mobile phones, including their batteries, has become crucial for environmental sustainability, but traditional manual dismantling methods are time-consuming and inefficient. This study aims to improve the pre-processing of end-of-life mobile phones (EoL-MPs) through industrial shredding and sieving, minimizing manual labor. For the first time, a sample of 850 mobile phones in an interval of 20 years (2000-2020) was collected and analyzed before and after being processed. EoL-MP main bodies and batteries were crushed and sieved into eight distinct size fractions. This study examined 14 metals, including aluminum (Al), copper (Cu), iron (Fe), zinc (Zn), nickel (Ni), manganese (Mn), chromium (Cr), cobalt (Co), lithium (Li), gold (Au), silver (Ag), neodymium (Nd), platinum (Pt), and palladium (Pd). The results show that 1 kg of mobile phone bodies contains approximately 278 g of metals, valued at $13.41, with $10.97 derived from Au. The metal distribution revealed that larger fractions (>2 mm) are rich in structural metals such as Fe and Al. The finest fraction (<0.125 mm) contained up to 435 mg/kg of Au, with enrichment factors reaching 3 to 5 for Au, Pa, and Pt. Batteries showed even higher concentrations, with 524 g of metals per kilogram, valued at $11.37/kg, predominantly from Co and Au. Co was concentrated in smaller fractions, reaching 331 g/kg in particles smaller than 1.25 mm. The study provides key insights into efficient metal recovery strategies, emphasizing the economic and environmental potential of recycling mobile phone waste. The findings highlight the importance of optimizing pre-processing methods to achieve the growing demand for sustainable waste management solutions.
Collapse
Affiliation(s)
- Joan Morell
- Department of Mining, Industrial and ICT Engineering (EMIT), Research Group on Intelligent and Sustainable Resources and Industries (RIIS), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain
| | - David Ribas
- Department of Mining, Industrial and ICT Engineering (EMIT), Research Group on Intelligent and Sustainable Resources and Industries (RIIS), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain
| | - Isolda Tristany
- Department of Mining, Industrial and ICT Engineering (EMIT), Research Group on Intelligent and Sustainable Resources and Industries (RIIS), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain
| | - Xavier Guimerà
- Department of Mining, Industrial and ICT Engineering (EMIT), Research Group on Intelligent and Sustainable Resources and Industries (RIIS), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain
| | - Antonio David Dorado
- Department of Mining, Industrial and ICT Engineering (EMIT), Research Group on Intelligent and Sustainable Resources and Industries (RIIS), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain.
| |
Collapse
|
3
|
Man GT, Iordache AM, Zgavarogea R, Nechita C. Recycling Lithium-Ion Batteries-Technologies, Environmental, Human Health, and Economic Issues-Mini-Systematic Literature Review. MEMBRANES 2024; 14:277. [PMID: 39728727 DOI: 10.3390/membranes14120277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource. Classical technologies for recovering lithium from batteries are associated with various environmental issues, so lithium recovery remains challenging. However, the emergence of membrane processes has opened new research directions in lithium recovery, offering hope for more efficient and environmentally friendly solutions. These processes can be integrated into current industrial recycling flows, having a high recovery potential and paving the way for a more sustainable future. A second method, biolexivation, is eco-friendly, but this point illustrates significant drawbacks when used on an industrial scale. We discussed toxicity induced by metals associated with Li to iron-oxidizing bacteria, which needs further study since it causes low recycling efficiency. One major environmental problem is the low efficiency of the recovery of Li from the water cycle, which affects global-scale safety. Still, electromembranes can offer promising solutions in the future, but there is needed to update regulations to actual needs for both producing and recycling LIB.
Collapse
Affiliation(s)
- Geani Teodor Man
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research and Development Institute for Cryogenics and Isotopic Technologies-ICSI Ramnicu Valcea, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania
| | - Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies-ICSI Ramnicu Valcea, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania
| | - Ramona Zgavarogea
- National Research and Development Institute for Cryogenics and Isotopic Technologies-ICSI Ramnicu Valcea, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Drăcea"-INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania
| |
Collapse
|
4
|
Debrah JK, Teye GK, Dinis MAP. Factors influencing management of dry cell battery waste: a case of Greater Accra Region in Ghana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1181. [PMID: 39511056 PMCID: PMC11543774 DOI: 10.1007/s10661-024-13297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Indiscriminate disposal of dry cell battery (DCB) waste contributes to environmental and public health issues in developing countries such as Ghana, due to the toxic nature of this specific waste. Accordingly, a study was conducted in Accra, Ghana, to determine the socio-economic and demographic factors influencing handling DCB waste, aiming a sustainable environment. Using a random sampling technique, a descriptive cross-sectional survey was conducted, encompassing 367 respondents from the Accra-Tema Metropolitan areas and Tema West Municipal Assembly in Greater Accra, Ghana. Using descriptive and multivariate statistical methods, the survey data were analysed with the Statistical Package for Social Sciences (SPSS) version 27. The results of this study show that female gender and residential area are likely to positively influence the use of DCB at home. Education significantly affects the use of DCB and its proper disposal. The results also suggest that 78% of the respondents disposed of DCB waste in waste bins. The mean monthly income of the respondents stands at USD 270, which is average and likely partially to positively influence the disposal of the DCB. The data collected revealed that female gender, age group, family size, and education level influence the indiscriminate disposal of DCB waste and DCB waste recycling. The results highlight that educated females above the age of 55, with a monthly income, are likely to properly segregate DCB waste. This study contributes to the knowledge gap in relation to dry cell battery waste management (DCBWM) in developing countries, aiming to advance global sustainability. This study is expected to contribute to educate and create awareness in managing DCB waste to reduce its indiscriminate disposal which leads to environmental pollution and negatively affects human health and environmental sustainability in Ghana.
Collapse
Affiliation(s)
- Justice Kofi Debrah
- Faculty of Science and Technology, University Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal.
| | - Godfred Kwesi Teye
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes of Ministry of Education, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, China
| | - Maria Alzira Pimenta Dinis
- Fernando Pessoa Research, Innovation and Development Institute (FP-I3ID), University Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Marine and Environmental Sciences Centre (MARE), University of Coimbra, Edifício do Patronato, Rua da Matemática, 49, 3004-517, Coimbra, Portugal
| |
Collapse
|
5
|
Deo L, Benjamin LK, Osborne JW. Critical review on unveiling the toxic and recalcitrant effects of microplastics in aquatic ecosystems and their degradation by microbes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:896. [PMID: 39230754 DOI: 10.1007/s10661-024-13023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Production of synthetic plastic obtained from fossil fuels are considered as a constantly growing problem and lack in the management of plastic waste has led to severe microplastic pollution in the aquatic ecosystem. Plastic particles less than 5mm are termed as microplastics (MPs), these are pervasive in water and soil, it can also withstand longer period of time with high durability. It can be broken down into smaller particles and can be adsorbed by various life-forms. Most marine organisms tend to consume plastic debris that can be accumulated easily into the vertebrates, invertebrates and planktonic entities. Often these plastic particles surpass the food chain, resulting in the damage of various organs and inhibiting the uptake of food due to the accumulation of microplastics. In this review, the physical and chemical properties of microplastics, as well as their effects on the environment and toxicity of their chemical constituents are discussed. In addition, the paper also sheds light on the potential of microorganisms such as bacteria, fungi, and algae which play a pivotal role in the process of microplastics degradation. The mechanism of microbial degradation, the factors that affect degradation, and the current advancements in genetic and metabolic engineering of microbes to promote degradation are also summarized. The paper also provides information on the bacterial, algal and fungal degradation mechanism including the possible enzymes involved in microplastic degradation. It also investigates the difficulties, limitations, and potential developments that may occur in the field of microbial microplastic degradation.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Ma R, Tao S, Sun X, Ren Y, Sun C, Ji G, Xu J, Wang X, Zhang X, Wu Q, Zhou G. Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions. Nat Commun 2024; 15:7641. [PMID: 39223130 PMCID: PMC11369104 DOI: 10.1038/s41467-024-52030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Reuse and recycling of retired electric vehicle (EV) batteries offer a sustainable waste management approach but face decision-making challenges. Based on the process-based life cycle assessment method, we present a strategy to optimize pathways of retired battery treatments economically and environmentally. The strategy is applied to various reuse scenarios with capacity configurations, including energy storage systems, communication base stations, and low-speed vehicles. Hydrometallurgical, pyrometallurgical, and direct recycling considering battery residual values are evaluated at the end-of-life stage. For the optimized pathway, lithium iron phosphate (LFP) batteries improve profits by 58% and reduce emissions by 18% compared to hydrometallurgical recycling without reuse. Lithium nickel manganese cobalt oxide (NMC) batteries boost profit by 19% and reduce emissions by 18%. Despite NMC batteries exhibiting higher immediate recycling returns, LFP batteries provide superior long-term benefits through reuse before recycling. Our strategy features an accessible evaluation framework for pinpointing optimal pathways of retired EV batteries.
Collapse
Affiliation(s)
- Ruifei Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Shengyu Tao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xin Sun
- Integrated Research on Energy, Environment and Society (IREES), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, The Netherlands
| | - Yifang Ren
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Chongbo Sun
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guanjun Ji
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiahe Xu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xuecen Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xuan Zhang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Qiuwei Wu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
7
|
Ohene-Botwe B, Amedu C, Antwi WK, Abdul-Razak W, Kyei KA, Arkoh S, Mudadi LS, Mushosho EY, Bwanga O, Chinene B, Nyawani P, Mutandiro LC, Piersson AD. Promoting sustainability activities in clinical radiography practice and education in resource-limited countries: A discussion paper. Radiography (Lond) 2024; 30 Suppl 1:56-61. [PMID: 38905726 DOI: 10.1016/j.radi.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Urgent global action is required to combat climate change, with radiographers poised to play a significant role in reducing healthcare's environmental impact. This paper explores radiography-related activities and factors in resource-limited departments contributing to the carbon footprint and proposes strategies for mitigation. The rationale is to discuss the literature regarding these contributing factors and to raise awareness about how to promote sustainability activities in clinical radiography practice and education in resource-limited countries. KEY FINDINGS The radiography-related activities and factors contributing to the carbon footprint in resource-limited countries include the use of old equipment and energy inefficiency, insufficient clean energy to power equipment, long-distance commuting for radiological examinations, high film usage and waste, inadequate training and research on sustainable practices, as well as limited policies to drive support for sustainability. Addressing these issues requires a multifaceted approach. Firstly, financial assistance and partnerships are needed to adopt eco-friendly technologies and clean energy sources to power equipment, thus tackling issues related to old equipment and energy inefficiency. Transitioning to digital radiography can mitigate the environmental impact of high film usage and waste, while collaboration between governments, healthcare organisations, and international stakeholders can improve access to radiological services, reducing long-distance commuting. Additionally, promoting education programmes and research efforts in sustainability will empower radiographers with the knowledge to practice sustainably, complemented by clear policies such as green imaging practices to guide and incentivise the adoption of sustainable practices. These integrated solutions can significantly reduce the carbon footprint of radiography activities in resource-limited settings while enhancing healthcare delivery. CONCLUSION Radiography-related activities and factors in resource-limited departments contributing to the carbon footprint are multifaceted but can be addressed through concerted efforts. IMPLICATIONS FOR PRACTICE Addressing the challenges posed by old equipment, energy inefficiency, high film usage, and inadequate training through collaborative efforts and robust policy implementation is essential for promoting sustainable radiography practices in resource-limited countries. Radiographers in these countries need to be aware of these factors contributing to the carbon footprint and begin to work with the relevant stakeholders to mitigate them. Furthermore, there is a need for them to engage in education programmes and research efforts in sustainability to empower them with the right knowledge and understanding to practice sustainably.
Collapse
Affiliation(s)
- B Ohene-Botwe
- Department of Midwifery & Radiography, School of Health & Psychological Sciences, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom.
| | - C Amedu
- Department of Midwifery & Radiography, School of Health & Psychological Sciences, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom.
| | - W K Antwi
- Department of Radiography, School of Biomedical & Allied Health Sciences, University of Ghana, Ghana.
| | - W Abdul-Razak
- Department of Medical Imaging, Fatima College of Health Sciences, AI Ain, United Arab Emirates.
| | - K A Kyei
- Department of Radiography, School of Biomedical & Allied Health Sciences, University of Ghana, Ghana.
| | - S Arkoh
- Department of Radiology, York and Scarborough Teaching Hospitals NHS Trust, United Kingdom.
| | - L-S Mudadi
- Royal Papworth Hospital, NHS Foundation Trust, Cambridge, United Kingdom.
| | - E Y Mushosho
- Harare Institute of Technology, School of Allied Health Sciences, Harare, Zimbabwe.
| | - O Bwanga
- Radiology Department, Midlands University Hospital Tullamore, Ireland.
| | - B Chinene
- Harare Institute of Technology, School of Allied Health Sciences, Harare, Zimbabwe.
| | - P Nyawani
- Harare Institute of Technology, School of Allied Health Sciences, Harare, Zimbabwe.
| | - L C Mutandiro
- Harare Institute of Technology, School of Allied Health Sciences, Harare, Zimbabwe.
| | - A D Piersson
- Department of Imaging Technology & Sonography, University of Cape Coast, Central Region, Ghana.
| |
Collapse
|
8
|
Du Y, Zhou Y, Jia D, Li X. The end-of-life power battery recycling & remanufacturing center location-adjustment problem considering battery capacity and quantity uncertainty. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120774. [PMID: 38569265 DOI: 10.1016/j.jenvman.2024.120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The booming electric vehicle market has led to an increasing number of end-of-life power batteries. In order to reduce environmental pollution and promote the realization of circular economy, how to fully and effectively recycle the end-of-life power batteries has become an urgent challenge to be solved today. The recycling & remanufacturing center is an extremely important and key facility in the recycling process of used batteries, which ensures that the recycled batteries can be handled in a standardized manner under the conditions of professional facilities. In reality, different adjustment options for existing recycling & remanufacturing centers have a huge impact on the planning of new sites. This paper proposes a mixed-integer linear programming model for the siting problem of battery recycling & remanufacturing centers considering site location-adjustment. The model allows for demolition, renewal, and new construction options in planning for recycling & remanufacturing centers. By adjusting existing sites, this paper provides an efficient allocation of resources under the condition of meeting the demand for recycling of used batteries. Next, under the new model proposed in this paper, the uncertainty of the quantity and capacity of recycled used batteries is considered. By establishing different capacity conditions of batteries under multiple scenarios, a robust model was developed to determine the number and location of recycling & remanufacturing centers, which promotes sustainable development, reduces environmental pollution and effectively copes with the risk of the future quantity of used batteries exceeding expectations. In the final results of the case analysis, our proposed model considering the existing sites adjustment reduces the cost by 3.14% compared to the traditional model, and the average site utilization rate is 15.38% higher than the traditional model. The results show that the model has an effective effect in reducing costs, allocating resources, and improving efficiency, which could provide important support for decision-making in the recycling of used power batteries.
Collapse
Affiliation(s)
- Yunjie Du
- School of Economics and Management, North China Electric Power University, Beijing, China; Beijing Key Laboratory of New Energy and Low-carbon Development, North China Electric Power University, Beijing, China.
| | - Yuexin Zhou
- School of Economics and Management, North China Electric Power University, Beijing, China; Beijing Key Laboratory of New Energy and Low-carbon Development, North China Electric Power University, Beijing, China.
| | - Dongqing Jia
- School of Economics and Management, North China Electric Power University, Beijing, China; Beijing Key Laboratory of New Energy and Low-carbon Development, North China Electric Power University, Beijing, China.
| | - Xingmei Li
- School of Economics and Management, North China Electric Power University, Beijing, China; Beijing Key Laboratory of New Energy and Low-carbon Development, North China Electric Power University, Beijing, China.
| |
Collapse
|