1
|
Rhodes EM, Yap KN, Hill GE, Hood WR. A Comparison of the Mitochondrial Performance between Migratory and Sedentary Mimid Thrushes. Integr Comp Biol 2024; 64:1859-1870. [PMID: 39122659 DOI: 10.1093/icb/icae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
Birds exhibit a variety of migration strategies. Because sustained flapping flight requires the production of elevated levels of energy compared to typical daily activities, migratory birds are well-documented to have several physiological adaptations to support the energy demands of migration. However, even though mitochondria are the source of ATP that powers flight, the respiratory performance of the mitochondria is almost unstudied in the context of migration. We hypothesized that migratory species would have higher mitochondrial respiratory performance during migration compared to species that do not migrate. To test this hypothesis, we compared variables related to mitochondrial respiratory function between two confamilial bird species-the migratory Gray Catbird (Dumetella carolinensis) and the non-migratory Northern Mockingbird (Mimus polyglottos). Birds were captured at the same location along the Alabama Gulf Coast, where we assumed that Gray Catbirds were migrants and where resident Northern Mockingbirds live year-round. We found a trend in citrate synthase activity, which suggests that Gray Catbirds have a greater mitochondrial volume in their pectoralis muscle, but we observed no other differences in mitochondrial respiration or complex enzymatic activities between individuals from the migrant vs. the non-migrant species. However, when we assessed the catbirds included in our study using well-established indicators of migratory physiology, birds fell into two groups: a group with physiological parameters indicating a physiology of birds engaged in migration and a group with the physiology of birds not migrating. Thus, our comparison included catbirds that appeared to be outside of migratory condition. When we compared the mitochondrial performance of these three groups, we found that the mitochondrial respiratory capacity of migrating catbirds was very similar to that of Northern Mockingbirds, while the catbirds judged to be not migrating were lowest. One explanation for these observations is these species display very different daily flight behaviors. While the mockingbirds we sampled were not breeding nor migrating, they are highly active birds, living in the open and engaging in flapping flights throughout each day. In contrast, Gray Catbirds live in shrubs and fly infrequently when not migrating. Such differences in baseline energy needs likely confounded our attempt to study adaptations to migration.
Collapse
Affiliation(s)
- Emma M Rhodes
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Malkoc K, Hau M, McWilliams S, Sadowska ET, Dzialo M, Pierce B, Trost L, Bauchinger U, Udino E, Casagrande S. Commentary on Thoral et al. (2024) 'The relationship between mitochondrial respiration, resting metabolic rate and blood cell count in great tits'. Biol Open 2024; 13:bio061770. [PMID: 39565000 PMCID: PMC11603116 DOI: 10.1242/bio.061770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Affiliation(s)
- Kasja Malkoc
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | - Michaela Hau
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
- University of Konstanz, Konstanz, Germany
| | - Scott McWilliams
- University of Rhode Island, Department of Natural Resources Science, Kingston, RI 02881, USA
| | | | - Maciej Dzialo
- Jagiellonian University, Institute of Environmental Sciences, 30-387 Kraków, Poland
| | - Barbara Pierce
- Sacred Heart University, Department of Biology, Fairfield, CT 06825, USA
| | - Lisa Trost
- Max Planck Institute for Biological Intelligence, Department for Behavioral Neurobiology, 82319 Seewiesen, Germany
| | - Ulf Bauchinger
- Jagiellonian University, Institute of Environmental Sciences, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| | - Eve Udino
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | - Stefania Casagrande
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| |
Collapse
|
3
|
Thoral E, García-Díaz CC, Persson E, Chamkha I, Elmér E, Ruuskanen S, Nord A. Response to 'Commentary on Thoral et al. (2024) The relationship between mitochondrial respiration, resting metabolic rate and blood cell count in great tits'. Biol Open 2024; 13:bio061771. [PMID: 39565001 PMCID: PMC11603115 DOI: 10.1242/bio.061771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Affiliation(s)
- Elisa Thoral
- Lund University, Department of Biology, Evolutionary Ecology & Infection Biology, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Carmen C García-Díaz
- Lund University, Department of Biology, Evolutionary Ecology & Infection Biology, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Elin Persson
- Lund University, Department of Biology, Evolutionary Ecology & Infection Biology, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Imen Chamkha
- Lund University, Department of Clinical Sciences, Mitochondrial Medicine, Sölvegatan 17, SE-221 84, Lund, Sweden
| | - Eskil Elmér
- Lund University, Department of Clinical Sciences, Mitochondrial Medicine, Sölvegatan 17, SE-221 84, Lund, Sweden
| | - Suvi Ruuskanen
- University of Jyväskylä, Department of Biological and Environmental Science, Survontie 9, Jyväskylä, Finland
| | - Andreas Nord
- Lund University, Department of Biology, Evolutionary Ecology & Infection Biology, Sölvegatan 37, SE-223 62, Lund, Sweden
| |
Collapse
|
4
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
5
|
Thoral E, García-Díaz CC, Persson E, Chamkha I, Elmér E, Ruuskanen S, Nord A. The relationship between mitochondrial respiration, resting metabolic rate and blood cell count in great tits. Biol Open 2024; 13:bio060302. [PMID: 38385271 PMCID: PMC10958200 DOI: 10.1242/bio.060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Although mitochondrial respiration is believed to explain a substantial part of the variation in resting metabolic rate (RMR), few studies have empirically studied the relationship between organismal and cellular metabolism. We therefore investigated the relationship between RMR and mitochondrial respiration of permeabilized blood cells in wild great tits (Parus major L.). We also studied the correlation between mitochondrial respiration traits and blood cell count, as normalizing mitochondrial respiration by the cell count is a method commonly used to study blood metabolism. In contrast to previous studies, our results show that there was no relationship between RMR and mitochondrial respiration in intact blood cells (i.e. with the ROUTINE respiration). However, when cells were permeabilized and interrelation re-assessed under saturating substrate availability, we found that RMR was positively related to phosphorylating respiration rates through complexes I and II (i.e. OXPHOS respiration) and to the mitochondrial efficiency to produce energy (i.e. net phosphorylation efficiency), though variation explained by the models was low (i.e. linear model: R2=0.14 to 0.21). However, unlike studies in mammals, LEAK respiration without [i.e. L(n)] and with [i.e. L(Omy)] adenylates was not significantly related to RMR. These results suggest that phosphorylating respiration in blood cells can potentially be used to predict RMR in wild birds, but that this relationship may have to be addressed in standardized conditions (permeabilized cells) and that the prediction risks being imprecise. We also showed that, in our conditions, there was no relationship between any mitochondrial respiration trait and blood cell count. Hence, we caution against normalising respiration rates using this parameter as is sometimes done. Future work should address the functional explanations for the observed relationships, and determine why these appear labile across space, time, taxon, and physiological state.
Collapse
Affiliation(s)
- Elisa Thoral
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Carmen C. García-Díaz
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Elin Persson
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Imen Chamkha
- Lund University, Department of Clinical Sciences, Mitochondrial Medicine, Sölvegatan 17, SE-221 84, Lund, Sweden
| | - Eskil Elmér
- Lund University, Department of Clinical Sciences, Mitochondrial Medicine, Sölvegatan 17, SE-221 84, Lund, Sweden
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Andreas Nord
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden
| |
Collapse
|