1
|
Wang M, Wang Z, Zhang G, Fan J. Interleukin-enhanced CAR-engineered immune cells in tumor immunotherapy: current insights and future perspectives. Cytokine 2025; 192:156973. [PMID: 40449036 DOI: 10.1016/j.cyto.2025.156973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/15/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025]
Abstract
Despite the remarkable clinical success of chimeric antigen receptor (CAR)-T cell therapy in hematologic malignancies, the therapeutic efficacy of conventional second-generation CAR-T cells in treating solid tumors remains suboptimal, primarily due to three major biological barriers: (1) the immunosuppressive tumor microenvironment (TME), (2) inadequate tumor infiltration capacity, and (3) T cell exhaustion mechanisms. To overcome these limitations, innovative fourth-generation "armored" CAR-T cell platforms have been engineered with integrated cytokine-secreting modules designed to potentiate anti-tumor responses through localized immunomodulation. These advanced cellular therapeutics achieve targeted delivery of various immunostimulatory cytokines directly within the TME, thereby orchestrating three critical therapeutic effects: (I) remodeling of the immunosuppressive niche, (II) enhancement of immune cell persistence, and (III) neutralization of immunosuppressive signaling networks. This comprehensive review systematically examines the translational applications of cytokine-secreting CAR-engineered immune cells, including CAR-T, CAR-NK, and CAR-iNKT cell platforms, in solid tumor immunotherapy, with particular emphasis on multiple classes of immunomodulatory cytokines that enhance cytotoxic potential, promote immune cell survival, and counteract TME-mediated immunosuppression. We critically evaluate preclinical and clinical evidence demonstrating the therapeutic efficacy of cytokine-armed CAR-engineered cells across various tumor models, including hematological malignancies, glioblastoma, and neuroblastoma. Furthermore, this review addresses current translational challenges, particularly cytokine-associated toxicity profiles and innovative strategies for achieving spatiotemporal control of cytokine release, while discussing their potential implications for advancing clinical outcomes in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130022, China
| | - Zixuan Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing 101149, China
| | - Guangji Zhang
- Chinese Institutes for Medical Research, Beijing, China.
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130022, China.
| |
Collapse
|
2
|
Li YR, Zhou K, Lee D, Zhu Y, Halladay T, Yu J, Zhou Y, Lyu Z, Fang Y, Chen Y, Semaan S, Yang L. Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture. Nat Protoc 2025; 20:1352-1388. [PMID: 39825143 DOI: 10.1038/s41596-024-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 01/20/2025]
Abstract
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (AlloNKT) cells and their CAR-armed derivatives (AlloCAR-NKT cells). We include detailed information on lentivirus generation and titration, as well as the five stages of ex vivo culture required to generate AlloCAR-NKT cells, including HSP cell engineering, HSP cell expansion, NKT cell differentiation, NKT cell deep differentiation and NKT cell expansion. In addition, we describe procedures for evaluating the pharmacology, antitumor efficacy and mechanism of action of AlloCAR-NKT cells. It takes ~2 weeks to generate and titrate lentiviruses and ~6 weeks to generate mature AlloCAR-NKT cells. Competence with human stem cell and T cell culture, gene engineering and flow cytometry is required for optimal results.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sasha Semaan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Qin A, Musket A, Hilton B, Preiszner J, Krenciute G, Berens ME, Ying M, Musich PR, Xie Q. Efficacy of MET-targeting CAR T cells against glioblastoma patient-derived xenograft models. J Transl Med 2025; 23:460. [PMID: 40259400 PMCID: PMC12013037 DOI: 10.1186/s12967-025-06475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Genetic alteration of the MET receptor tyrosine kinase frequently occurs in glioblastoma (GBM). Clinically, bevacizumab treatment results in MET signaling activation, leading to GBM recurrence with a more malignant phenotype. While MET has been a promising therapeutic target, MET inhibitors have not been successful in treating GBM patients. MET-directed chimeric antigen receptor (CAR) T cells hold the promise of targeting MET-positive GBM regardless of genetic alterations or kinase activity. METHODS GBM patient-derived xenografts (PDX) harboring MET amplification (METamp) or PTPRZ-MET fusion (ZM) were propagated in vivo followed by glioma stem cell (GSC) isolation. Cell-based assays were used for comparing GSC survival in response to MET inhibitors and CAR T cells. Multi-panel cytokine release was analyzed to profile MET-CAR T cell activation during co-culture with GBM. Orthotopic tumor growth and real-time imaging were performed to evaluate MET-CAR T cell therapeutic efficacy in vivo. RESULTS Although GBM are heterogeneous tumors, neuro-sphere cells isolated from METamp or ZM fusion PDX tumors showed universal cognate genetic MET alteration along with GSC markers such as SOX2 and nestin. Both METamp and ZM fusion tumors showed MET overexpression but only the METamp cells presented activated MET signaling which was vulnerable to MET inhibitors. In contrast, MET-CAR T cells specifically inhibited all MET-positive tumor growth regardless of MET activation status. CONCLUSIONS Whereas MET inhibitors are effective in MET-active tumors, MET-CAR T cells eradicate MET-positive GBM growth in an antigen-dependent manner, demonstrating a promising therapeutic approach for treating MET-positive GBM. MET overexpression, especially METamp and ZM fusion may be used to predefine the GBM patients for treating with MET-CAR T cell therapy.
Collapse
Affiliation(s)
- Anna Qin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN, 37614, USA
| | - Anna Musket
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN, 37614, USA
| | - Benjamin Hilton
- Cytogenetics Laboratory, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Johanna Preiszner
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37604, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael E Berens
- Clinical Genomics and Therapeutics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Mingyao Ying
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN, 37614, USA
| | - Qian Xie
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN, 37614, USA.
- Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
4
|
Li S, Li YR, Nan H, Liu Z, Fang Y, Zhu Y, Lyu Z, Shao Z, Zhu E, Zhang B, Yang Y, Shen X, Chen Y, Hsiai T, Yang L. Engineering an in vivo charging station for CAR-redirected invariant natural killer T cells to enhance cancer therapy. RESEARCH SQUARE 2025:rs.3.rs-6215345. [PMID: 40297706 PMCID: PMC12036460 DOI: 10.21203/rs.3.rs-6215345/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Invariant natural killer T (iNKT) cells are a distinct subset of T lymphocytes that possess unique properties making them highly suitable for addressing the challenges of solid tumor immunotherapy. Unlike conventional T cells, which are restricted by polymorphic major histocompatibility complex (MHC) molecules and recognize peptide antigens, iNKT cells are restricted by the non-polymorphic CD1d molecule and respond to lipid antigens. Chimeric antigen receptor (CAR)-redirected iNKT (CAR-iNKT) cells represent a significant advancement in cancer immunotherapy. However, optimizing sustained activation and long-term persistence of CAR-iNKT cells remains a critical need for effective solid tumor treatment. To address these limitations, we develop the iNKT cell-targeted microparticle recruitment and activation system (iMRAS), a biomimetic platform designed to enhance iNKT cell functionality through localized immunostimulation in vivo. This biomimetic platform is designed to function as an in vivo "charging station" containing chemotactic and activation signals for the recruitment, activation, and expansion of CAR-iNKT cells, leading to more effective tumor killing and longer persistence of CAR-iNKT cells, as demonstrated in the therapy of lymphoma and melanoma. Through its biomimetic design and localized immunostimulatory effects, iMRAS helps overcome the limitations of current therapies for solid tumors, establishing a robust platform for enhancing systemic CAR-iNKT cell-mediated immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zibai Lyu
- University of California, Los Angeles
| | | | | | - Bo Zhang
- University of California, Los Angeles
| | | | | | | | | | - Lili Yang
- University of California, Los Angeles
| |
Collapse
|
5
|
He B, Chen H, Wu J, Qiu S, Mai Q, Zeng Q, Wang C, Deng S, Cai Z, Liu X, Xuan L, Li C, Zhou H, Liu Q, Xu N. Interleukin-21 engineering enhances CD19-specific CAR-NK cell activity against B-cell lymphoma via enriched metabolic pathways. Exp Hematol Oncol 2025; 14:51. [PMID: 40176196 PMCID: PMC11967061 DOI: 10.1186/s40164-025-00639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND NK cells engineered to express interleukin-15 (IL-15) and a CD19-targeted chimeric antigen receptor (CAR) have been used to treat patients with relapsed and/or refractory B cell malignances, demonstrating encouraging outcomes and favorable safety profile. However, the effect of IL-21 in CAR-NK cell therapy remains unknown. METHODS CD19-specific CAR with 4-1BB costimulatory domain and cytokine IL-21 or IL-15 was constructed and transduced into peripheral blood (PB)-derived NK cells to produce CD19-CAR-IL21 NK cells (CAR-21) or CD19-CAR-IL15 NK cells (CAR-15), respectively. The phenotypic profile, transcriptomic characteristics, functionality and anti-tumor activity of CAR-21 NK cells and CAR-15 NK cells were compared. RESULTS Compared with CAR-NK cells co-expressing IL-15, CAR-NK cells co-expressing IL-21 exhibited significantly increased IFN-γ, TNF-α and Granzyme B production, as well as degranulation, in response to CD19+ Raji lymphoma cells, resulting in enhanced cytotoxic activity upon repetitive tumor stimulation. Furthermore, IL-21 co-expression improved the in vivo persistence of CAR-NK cells and significantly suppressed tumor growth in a xenograft Raji lymphoma murine model, leading to prolonged survival of CD19+ tumor-bearing mice. RNA sequencing revealed that CAR-21 NK cells have a distinct transcriptomic signature characterized by enriched in cytokine, cytotoxicity, and metabolic related signaling, when compared with CAR-15 NK or CAR NK cells. CONCLUSIONS This study demonstrated that CD19-specific CAR-NK cells engineered to express IL-21 exhibit superior persistence and anti-tumor activity against CD19+ tumor compared to CAR-NK cells co-expressing IL-15, which might be a promising therapeutic strategy for treating patients with relapse or refractory B cell malignances.
Collapse
Affiliation(s)
- Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxu Wu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shiqiu Qiu
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiusui Mai
- Department of Blood and Transfusion, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qing Zeng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Jaing TH, Hsiao YW, Wang YL. Chimeric Antigen Receptor Cell Therapy: Empowering Treatment Strategies for Solid Tumors. Curr Issues Mol Biol 2025; 47:90. [PMID: 39996811 PMCID: PMC11854309 DOI: 10.3390/cimb47020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has demonstrated impressive efficacy in the treatment of blood cancers; however, its effectiveness against solid tumors has been significantly limited. The differences arise from a range of difficulties linked to solid tumors, including an unfriendly tumor microenvironment, variability within the tumors, and barriers to CAR-T cell infiltration and longevity at the tumor location. Research shows that the reasons for the decreased effectiveness of CAR-T cells in treating solid tumors are not well understood, highlighting the ongoing need for strategies to address these challenges. Current strategies frequently incorporate combinatorial therapies designed to boost CAR-T cell functionality and enhance their capacity to effectively target solid tumors. However, these strategies remain in the testing phase and necessitate additional validation to assess their potential benefits. CAR-NK (natural killer), CAR-iNKT (invariant natural killer T), and CAR-M (macrophage) cell therapies are emerging as promising strategies for the treatment of solid tumors. Recent studies highlight the construction and optimization of CAR-NK cells, emphasizing their potential to overcome the unique challenges posed by the solid tumor microenvironment, such as hypoxia and metabolic barriers. This review focuses on CAR cell therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| | - Yi-Wen Hsiao
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| |
Collapse
|
7
|
Wang Z, Zhang G. CAR-iNKT cell therapy: mechanisms, advantages, and challenges. Curr Res Transl Med 2025; 73:103488. [PMID: 39662251 DOI: 10.1016/j.retram.2024.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
In recent years, chimeric antigen receptor (CAR) T-cell therapy has emerged as a groundbreaking approach in cancer immunotherapy. Particularly in hematologic malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL), B cell lymphomas and multiple myeloma. CAR-T therapy has demonstrated remarkable clinical efficacy, leading to the approval of several CAR-T cell products and offering significant benefits to numerous leukemia patients. Despite these successes, the application of CAR-T cells in solid tumors remains limited due to significant challenges, including immunosuppressive tumor microenvironments, heterogeneous antigen expression, and treatment-associated toxicities. In parallel with CAR-T development, researchers are investigating other immune cell platforms to overcome these obstacles. Among these, invariant natural killer T (iNKT) cells have garnered increasing attention for their unique immunological properties. Unlike conventional T cells, iNKT cells are a subset of T lymphocytes characterized by the expression of a semi-invariant T-cell receptor (TCR) that recognizes lipid antigens presented by CD1d molecules. This distinctive antigen recognition mechanism enables iNKT cells to bridge innate and adaptive immunity, granting them potent antitumor activity and the ability to modulate the tumor microenvironment. Additionally, iNKT cells exhibit intrinsic resistance to exhaustion and an enhanced ability to infiltrate solid tumors compared to traditional T cells. Building on these properties, researchers are leveraging CAR technology to enhance iNKT cell tumor-targeting capabilities, aiming to overcome barriers encountered in solid tumor therapy. This review provides an in-depth discussion of the application and therapeutic potential of CAR-iNKT cells in cancer immunotherapy, with a focus on their advantages over conventional CAR-T cells and their role in addressing the challenges of solid tumor treatment.
Collapse
Affiliation(s)
- Zixuan Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing 101149, China
| | - Guangji Zhang
- Beijing Rongai Biotechnology Co., Ltd, 1st Floor, Building 29, No. 5 Kechuang East 2nd Street, Tongzhou District, Beijing 101100, China.
| |
Collapse
|
8
|
O’Neal J, Mavers M, Jayasinghe RG, DiPersio JF. Traversing the bench to bedside journey for iNKT cell therapies. Front Immunol 2024; 15:1436968. [PMID: 39170618 PMCID: PMC11335525 DOI: 10.3389/fimmu.2024.1436968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are immune cells that harness properties of both the innate and adaptive immune system and exert multiple functions critical for the control of various diseases. Prevention of graft-versus-host disease (GVHD) by iNKT cells has been demonstrated in mouse models and in correlative human studies in which high iNKT cell content in the donor graft is associated with reduced GVHD in the setting of allogeneic hematopoietic stem cell transplants. This suggests that approaches to increase the number of iNKT cells in the setting of an allogeneic transplant may reduce GVHD. iNKT cells can also induce cytolysis of tumor cells, and murine experiments demonstrate that activating iNKT cells in vivo or treating mice with ex vivo expanded iNKT cells can reduce tumor burden. More recently, research has focused on testing anti-tumor efficacy of iNKT cells genetically modified to express a chimeric antigen receptor (CAR) protein (CAR-iNKT) cells to enhance iNKT cell tumor killing. Further, several of these approaches are now being tested in clinical trials, with strong safety signals demonstrated, though efficacy remains to be established following these early phase clinical trials. Here we review the progress in the field relating to role of iNKT cells in GVHD prevention and anti- cancer efficacy. Although the iNKT field is progressing at an exciting rate, there is much to learn regarding iNKT cell subset immunophenotype and functional relationships, optimal ex vivo expansion approaches, ideal treatment protocols, need for cytokine support, and rejection risk of iNKT cells in the allogeneic setting.
Collapse
Affiliation(s)
- Julie O’Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| | - Melissa Mavers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Reyka G. Jayasinghe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
9
|
Bui TA, Mei H, Sang R, Ortega DG, Deng W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. EBioMedicine 2024; 106:105266. [PMID: 39094262 PMCID: PMC11345408 DOI: 10.1016/j.ebiom.2024.105266] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a ground-breaking immunotherapeutic approach in cancer treatment. To overcome the complexity and high manufacturing cost associated with current ex vivo CAR T cell therapy products, alternative strategies to produce CAR T cells directly in the body have been developed in recent years. These strategies involve the direct infusion of CAR genes via engineered nanocarriers or viral vectors to generate CAR T cells in situ. This review offers a comprehensive overview of recent advancements in the development of T cell-targeted CAR generation in situ. Additionally, it identifies the challenges associated with in vivo CAR T method and potential strategies to overcome these issues.
Collapse
Affiliation(s)
- Thuy Anh Bui
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Whitlam Orthopaedic Research Centre, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Haoqi Mei
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rui Sang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - David Gallego Ortega
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
11
|
Huang J, Yang Q, Wang W, Huang J. CAR products from novel sources: a new avenue for the breakthrough in cancer immunotherapy. Front Immunol 2024; 15:1378739. [PMID: 38665921 PMCID: PMC11044028 DOI: 10.3389/fimmu.2024.1378739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed cancer immunotherapy. However, significant challenges limit its application beyond B cell-driven malignancies, including limited clinical efficacy, high toxicity, and complex autologous cell product manufacturing. Despite efforts to improve CAR T cell therapy outcomes, there is a growing interest in utilizing alternative immune cells to develop CAR cells. These immune cells offer several advantages, such as major histocompatibility complex (MHC)-independent function, tumor microenvironment (TME) modulation, and increased tissue infiltration capabilities. Currently, CAR products from various T cell subtypes, innate immune cells, hematopoietic progenitor cells, and even exosomes are being explored. These CAR products often show enhanced antitumor efficacy, diminished toxicity, and superior tumor penetration. With these benefits in mind, numerous clinical trials are underway to access the potential of these innovative CAR cells. This review aims to thoroughly examine the advantages, challenges, and existing insights on these new CAR products in cancer treatment.
Collapse
Affiliation(s)
| | | | - Wen Wang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|