1
|
Yashaswini C, Kiran NS, Chatterjee A. Zebrafish navigating the metabolic maze: insights into human disease - assets, challenges and future implications. J Diabetes Metab Disord 2025; 24:3. [PMID: 39697864 PMCID: PMC11649609 DOI: 10.1007/s40200-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Zebrafish (Danio rerio) have become indispensable models for advancing our understanding of multiple metabolic disorders such as obesity, diabetes mellitus, dyslipidemia, and metabolic syndrome. This review provides a comprehensive analysis of zebrafish as a powerful tool for dissecting the genetic and molecular mechanisms of these diseases, focusing on key genes, like pparγ, lepr, ins, and srebp. Zebrafish offer distinct advantages, including genetic tractability, optical transparency in early development, and the conservation of key metabolic pathways with humans. Studies have successfully used zebrafish to uncover conserved metabolic mechanisms, identify novel disease pathways, and facilitate high-throughput screening of potential therapeutic compounds. The review also highlights the novelty of using zebrafish to model multifactorial metabolic disorders, addressing challenges such as interspecies differences in metabolism and the complexity of human metabolic disease etiology. Moving forward, future research will benefit from integrating advanced omics technologies to map disease-specific molecular signatures, applying personalized medicine approaches to optimize treatments, and utilizing computational models to predict therapeutic outcomes. By embracing these innovative strategies, zebrafish research has the potential to revolutionize the diagnosis, treatment, and prevention of metabolic disorders, offering new avenues for translational applications. Continued interdisciplinary collaboration and investment in zebrafish-based studies will be crucial to fully harnessing their potential for advancing therapeutic development.
Collapse
Affiliation(s)
- Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| | | | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| |
Collapse
|
2
|
Munk Lauridsen M, Ravnskjaer K, Gluud LL, Sanyal AJ. Disease classification, diagnostic challenges, and evolving clinical trial design in MASLD. J Clin Invest 2025; 135:e189953. [PMID: 40371650 PMCID: PMC12077896 DOI: 10.1172/jci189953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) diagnosis and management have evolved rapidly alongside the increasing prevalence of obesity and related complications. Hepatology has expanded its focus beyond late-stage cirrhosis and portal hypertension to earlier, complex MASLD cases in younger patients, necessitating closer collaboration with endocrinology. The renaming of nonalcoholic fatty liver disease (NAFLD) to MASLD reflects its pathophysiology, reduces stigma, and has prompted new research directions. Noninvasive tests such as liver stiffness measurement now play a crucial role in diagnosis, reducing reliance on invasive liver biopsies. However, advanced omics technologies, despite their potential to enhance diagnostic precision and patient stratification, remain underutilized in routine clinical practice. Behavioral factors, including posttraumatic stress disorder (PTSD) and lifestyle choices, influence disease outcomes and must be integrated into patient management strategies. Primary care settings are critical for early screening to prevent progression to advanced disease, yet sizable challenges remain in implementing effective screening protocols. This Review explores these evolving aspects of MASLD diagnosis and management, emphasizing the need for improved diagnostic tools, multidisciplinary collaboration, and holistic care approaches to address existing gaps and ensure comprehensive patient care across all healthcare levels.
Collapse
Affiliation(s)
- Mette Munk Lauridsen
- Stravitz-Sanyal Liver Institute, Department of Gastroenterology & Hepatology, Virginia Commonwealth University Medical Clinic, Richmond, Virginia, USA
- University Hospital of Southern Denmark, Liver Research Group, Department of Gastroenterology and Hepatology, Esbjerg, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital, Hvidovre, Denmark, and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arun J. Sanyal
- Stravitz-Sanyal Liver Institute, Department of Gastroenterology & Hepatology, Virginia Commonwealth University Medical Clinic, Richmond, Virginia, USA
| |
Collapse
|
3
|
Chatzikalil E, Arvanitakis K, Kalopitas G, Florentin M, Germanidis G, Koufakis T, Solomou EE. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers (Basel) 2025; 17:392. [PMID: 39941760 PMCID: PMC11815926 DOI: 10.3390/cancers17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is rising in global incidence and mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disease, is strongly linked to metabolic conditions that can progress to liver cirrhosis and HCC. Iron overload (IO), whether inherited or acquired, results in abnormal iron hepatic deposition, significantly impacting MASLD development and progression to HCC. While the pathophysiological connections between hepatic IO, MASLD, and HCC are not fully understood, dysregulation of glucose and lipid metabolism and IO-induced oxidative stress are being investigated as the primary drivers. Genomic analyses of inherited IO conditions reveal inconsistencies in the association of certain mutations with liver malignancies. Moreover, hepatic IO is also associated with hepcidin dysregulation and activation of ferroptosis, representing promising targets for HCC risk assessment and therapeutic intervention. Understanding the relationship between hepatic IO, MASLD, and HCC is essential for advancing clinical strategies against liver disease progression, particularly with recent IO-targeted therapies showing potential at improving liver biochemistry and insulin sensitivity. In this review, we summarize the current evidence on the pathophysiological association between hepatic IO and the progression of MASLD to HCC, underscoring the importance of early diagnosis, risk stratification, and targeted treatment for these interconnected conditions.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Matilda Florentin
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
4
|
Meda C, Dolce A, Torre SD. Metabolic dysfunction-associated steatotic liver disease across women's reproductive lifespan and issues. Clin Mol Hepatol 2025; 31:327-332. [PMID: 39098816 PMCID: PMC11791579 DOI: 10.3350/cmh.2024.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Affiliation(s)
- Clara Meda
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Arianna Dolce
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Parua S, Das A, Hazra A, Chaudhuri P, Bhattacharya K, Dutta S, Sengupta P. Assessing body composition through anthropometry: Implications for diagnosing and managing polycystic ovary syndrome (PCOS). Clin Physiol Funct Imaging 2025; 45:e12905. [PMID: 39320052 DOI: 10.1111/cpf.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted endocrine disorder with profound implications for the reproductive and metabolic health of women. The utilization of anthropometric measures in the diagnosis and management of PCOS has gained increasing attention due to their practicality and predictive capacity for associated conditions such as obesity and insulin resistance. This review rigorously explores the application of various anthropometric indices, including body mass index, waist-to-hip ratio, and advanced metrics such as the body shape index and body roundness index, wrist circumference, neck circumference. These indices offer critical insights into body fat distribution and its association with the metabolic and hormonal perturbations characteristic of PCOS. The review underscores the necessity of addressing obesity, a prevalent comorbidity in PCOS, through lifestyle modifications and personalized therapeutic approaches. By incorporating anthropometric evaluations into routine clinical practice, healthcare professionals can enhance diagnostic precision, optimize treatment strategies, and ultimately improve patient outcomes. This integrative approach not only facilitates the management of the metabolic challenges inherent in PCOS but also contributes to the development of more individualized therapeutic interventions, thereby enhancing the overall quality of life for women affected by PCOS.
Collapse
Affiliation(s)
- Suparna Parua
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Odisha, India
| | - Arnab Das
- Department of Sports Science & Yoga, Ramakrishna Mission Vivekananda Educational & Research Institute, Howrah, West Bengal, India
| | - Anukona Hazra
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Odisha, India
| | - Prasenjit Chaudhuri
- Department of Physiology, Government General Degree College, Vidyasagar University, Mohanpur, West Bengal, India
- Department of Physiology, Hooghly Mohsin College, University of Burdwan, Hooghly, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Odisha, India
| | - Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, UAE
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE
| |
Collapse
|
6
|
Fernández-Alonso AM, Chedraui P, Pérez-López FR. Nonalcoholic fatty liver disease risk in polycystic ovary syndrome patients. Gynecol Endocrinol 2024; 40:2359031. [PMID: 38813954 DOI: 10.1080/09513590.2024.2359031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- Ana M Fernández-Alonso
- Department of Obstetrics and Gynecology, Torrecárdenas University Hospital, Almería, Spain
| | - Peter Chedraui
- Escuela de Posgrado en Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Faustino R Pérez-López
- Faculty of Medicine, Aragón Health Research Institute, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Milani I, Codini M, Guarisco G, Chinucci M, Gaita C, Leonetti F, Capoccia D. Hepatokines and MASLD: The GLP1-Ras-FGF21-Fetuin-A Crosstalk as a Therapeutic Target. Int J Mol Sci 2024; 25:10795. [PMID: 39409124 PMCID: PMC11477334 DOI: 10.3390/ijms251910795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The introduction of the term "Metabolic Steatotic Liver Disease" (MASLD) underscores the critical role of metabolic dysfunction in the development and progression of chronic liver disease and emphasizes the need for strategies that address both liver disease and its metabolic comorbidities. In recent years, a liver-focused perspective has revealed that altered endocrine function of the fatty liver is a key contributor to the metabolic dysregulation observed in MASLD. Due to its secretory capacity, the liver's increased production of proteins known as "hepatokines" has been linked to the development of insulin resistance, explaining why MASLD often precedes dysfunction in other organs and ultimately contributes to systemic metabolic disease. Among these hepatokines, fibroblast growth factor 21 (FGF21) and fetuin-A play central roles in regulating the metabolic abnormalities associated with MASLD, explaining why their dysregulated secretion in response to metabolic stress has been implicated in the metabolic abnormalities of MASLD. This review postulates why their modulation by GLP1-Ras may mediate the beneficial metabolic effects of these drugs, which have increased attention to their emerging role as pharmacotherapy for MASLD. By discussing the crosstalk between GLP1-Ras-FGF21-fetuin-A, this review hypothesizes that the possible modulation of fetuin-A by the novel GLP1-FGF21 dual agonist pharmacotherapy may contribute to the management of metabolic and liver diseases. Although research is needed to go into the details of this crosstalk, this topic may help researchers explore the mechanisms by which this type of pharmacotherapy may manage the metabolic dysfunction of MASLD.
Collapse
Affiliation(s)
- Ilaria Milani
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy;
| | - Gloria Guarisco
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Marianna Chinucci
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Chiara Gaita
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Frida Leonetti
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Danila Capoccia
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| |
Collapse
|
8
|
Arvanitakis K, Chatzikalil E, Kalopitas G, Patoulias D, Popovic DS, Metallidis S, Kotsa K, Germanidis G, Koufakis T. Metabolic Dysfunction-Associated Steatotic Liver Disease and Polycystic Ovary Syndrome: A Complex Interplay. J Clin Med 2024; 13:4243. [PMID: 39064282 PMCID: PMC11278502 DOI: 10.3390/jcm13144243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) are prevalent conditions that have been correlated with infertility through overlapped pathophysiological mechanisms. MASLD is associated with metabolic syndrome and is considered among the major causes of chronic liver disease, while PCOS, which is characterized by ovulatory dysfunction and hyperandrogenism, is one of the leading causes of female infertility. The pathophysiological links between PCOS and MASLD have not yet been fully elucidated, with insulin resistance, hyperandrogenemia, obesity, and dyslipidemia being among the key pathways that contribute to liver lipid accumulation, inflammation, and fibrosis, aggravating liver dysfunction. On the other hand, MASLD exacerbates insulin resistance and metabolic dysregulation in women with PCOS, creating a vicious cycle of disease progression. Understanding the intricate relationship between MASLD and PCOS is crucial to improving clinical management, while collaborative efforts between different medical specialties are essential to optimize fertility and liver health outcomes in individuals with MASLD and PCOS. In this review, we summarize the complex interplay between MASLD and PCOS, highlighting the importance of increasing clinical attention to the prevention, diagnosis, and treatment of both entities.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (S.M.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Elena Chatzikalil
- Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (S.M.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Djordje S. Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia;
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Symeon Metallidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (S.M.); (G.G.)
- Division of Endocrinology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
| | - Kalliopi Kotsa
- Division of Endocrinology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (S.M.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
9
|
Vatier C, Christin-Maitre S. Epigenetic/circadian clocks and PCOS. Hum Reprod 2024; 39:1167-1175. [PMID: 38600622 DOI: 10.1093/humrep/deae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) affects 6-20% of reproductive-aged women. It is associated with increased risks of metabolic syndrome, Type 2 diabetes, cardiovascular diseases, mood disorders, endometrial cancer and non-alcoholic fatty liver disease. Although various susceptibility loci have been identified through genetic studies, they account for ∼10% of PCOS heritability. Therefore, the etiology of PCOS remains unclear. This review explores the role of epigenetic changes and modifications in circadian clock genes as potential contributors to PCOS pathogenesis. Epigenetic alterations, such as DNA methylation, histone modifications, and non-coding RNA changes, have been described in diseases related to PCOS, such as diabetes, cardiovascular diseases, and obesity. Furthermore, several animal models have illustrated a link between prenatal exposure to androgens or anti-Müllerian hormone and PCOS-like phenotypes in subsequent generations, illustrating an epigenetic programming in PCOS. In humans, epigenetic changes have been reported in peripheral blood mononuclear cells (PBMC), adipose tissue, granulosa cells (GC), and liver from women with PCOS. The genome of women with PCOS is globally hypomethylated compared to healthy controls. However, specific hypomethylated or hypermethylated genes have been reported in the different tissues of these women. They are mainly involved in hormonal regulation and inflammatory pathways, as well as lipid and glucose metabolism. Additionally, sleep disorders are present in women with PCOS and disruptions in clock genes' expression patterns have been observed in their PBMC or GCs. While epigenetic changes hold promise as diagnostic biomarkers, the current challenge lies in distinguishing whether these changes are causes or consequences of PCOS. Targeting epigenetic modifications potentially opens avenues for precision medicine in PCOS, including lifestyle interventions and drug therapies. However, data are still lacking in large cohorts of well-characterized PCOS phenotypes. In conclusion, understanding the interplay between genetics, epigenetics, and circadian rhythms may provide valuable insights for early diagnosis and therapeutic strategies in PCOS in the future.
Collapse
Affiliation(s)
- Camille Vatier
- Department of Endocrine and Reproductive Medicine, Center of Endocrine Rare Diseases of Growth and Development (CRESCENDO), FIRENDO, Endo-ERN, Hôpital Saint-Antoine, Assistance-Publique-Hôpitaux de Paris, Sorbonne University, Paris, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Paris, France
| | - Sophie Christin-Maitre
- Department of Endocrine and Reproductive Medicine, Center of Endocrine Rare Diseases of Growth and Development (CRESCENDO), FIRENDO, Endo-ERN, Hôpital Saint-Antoine, Assistance-Publique-Hôpitaux de Paris, Sorbonne University, Paris, France
- INSERM UMR U933, Paris, France
| |
Collapse
|