1
|
Li CX, Xu Q, Jiang ST, Liu D, Tang C, Yang WL. Anticancer effects of salvianolic acid A through multiple signaling pathways (Review). Mol Med Rep 2025; 32:176. [PMID: 40280109 PMCID: PMC12056544 DOI: 10.3892/mmr.2025.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Salvia miltiorrhiza Bunge (Salvia miltiorrhiza), commonly referred to as Danshen, is a well‑known herb in traditional Chinese medicine, the active ingredients of which are mostly categorized as water soluble and lipid soluble. Salvianolic acids are the major water‑soluble phenolic acid constituents of Danshen; salvianolic acid B is the most prevalent, with salvianolic acid A (SAA) being the next most predominant form. SAA offers a wide array of pharmacological benefits, including cardiovascular protection, and anti‑inflammatory, antioxidant, antiviral and anticancer activities. SAA is currently undergoing phase III clinical trials for diabetic peripheral neuropathy and has shown protective benefits against cardiovascular illnesses; furthermore, its safety and effectiveness are encouraging. By targeting several signaling pathways, preventing cell cycle progression, tumor cell migration, invasion and metastasis, normalizing the tumor vasculature and encouraging cell apoptosis, SAA can also prevent the growth of malignancies. In addition, it enhances sensitivity to chemotherapeutic drugs, and alleviates their toxicity and side effects. However, the broad therapeutic use of SAA has been somewhat limited by its low content in Salvia miltiorrhiza Bunge and the difficulty of its extraction techniques. Therefore, the present review focuses on the potential mechanisms of SAA in tumor prevention and treatment. With the anticipation that SAA will serve a notable role in clinical applications in the future, these discoveries may offer a scientific basis for the combination of SAA with conventional chemotherapeutic drugs in the treatment of cancer, and could establish a foundation for the development of SAA as an anticancer drug.
Collapse
Affiliation(s)
- Cheng-Xia Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Xu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shi-Ting Jiang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Tang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Li Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Zong Y, Li Y, Han X, Yuan J, Ni A, Ma H, Ma L, Sun Y, Chen J. Identification of voltage-dependent anion-selective channel protein 1 as a freezability biomarker in chicken spermatozoa. Int J Biol Macromol 2025; 307:141894. [PMID: 40064268 DOI: 10.1016/j.ijbiomac.2025.141894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The sperm freezability during cryopreservation varies widely in chicken breeds and individuals, however, the underlying mechanisms are especially less examined. Comparative 4D label-free quantitative proteomic analysis of four high-freezability (HF) and four low-freezability (LF) Beijing-You chickens identified 42 differentially expressed proteins (DEPs) among 2309 proteins. The DEPs were mainly associated with metabolism and cellular processes. Voltage-dependent anion-selective channel protein 1 (VDAC1) was mainly related to mitochondrial function and ATP metabolism. The DEPs analyzed by quantitative proteomic analysis were validated by parallel reaction monitoring (PRM), and identified changes in VDAC1 that were specially linked to chicken sperm freezability. Furthermore, we confirmed that the freezing caused damage to the sperm mitochondrial ultrastructure and the mitochondrial membrane potential (MMP) in the LF group decreased extensively after freezing. The molecular docking showed that VDAC1 was binding highly stable with the mitochondrial-targeted antioxidant. The addition of mitoquinone (MitoQ) to the diluent increased the fertility of post-thawed sperm, from 33.95 % to 48.34 %, might be sperm mitochondria antioxidant potential enhanced. In conclusion, the difference abundance of sperm mitochondria VDAC1 protein might be one of the factors leading to different freezability of chicken sperm.
Collapse
Affiliation(s)
- Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xintong Han
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Cavallaro F, Conti Nibali S, Cubisino SAM, Caruso P, Zimbone S, Infantino IR, Reina S, De Pinto V, Messina A, Giuffrida ML, Magrì A. VDAC1-Targeted NHK1 Peptide Recovers Mitochondrial Dysfunction Counteracting Amyloid-β Oligomers Toxicity in Alzheimer's Disease. Aging Cell 2025:e70069. [PMID: 40223243 DOI: 10.1111/acel.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Mitochondrial dysfunction has been implicated in a broad range of age-related pathologies and has been proposed as a causative factor in Alzheimer's disease (AD). Analysis of post-mortem brains from AD patients showed increased levels of Voltage-dependent anion-selective channel 1 (VDAC1) in the dystrophic neurites surrounding amyloid-β (Aβ) deposits, suggesting a direct association between VDAC1 and mitochondrial toxicity. VDAC1 is the most abundant pore-forming protein of the outer mitochondrial membrane and, as a channel, it plays a pivotal role in regulating cellular bioenergetics, allowing the continuous exchange of ions and metabolites (ATP/ADP, Krebs cycle intermediates) between cytosol and mitochondria. In light of this evidence, we looked into the effects of Aβ oligomers on VDAC1 functions through electrophysiological and respirometric techniques. Our findings indicate that Aβ oligomers significantly modify the conductance, voltage dependency, and kinetic features of VDAC1, as well as its slight selectivity for anions, leading to a marked preference for cations. Given that VDAC1 is mainly involved in the trafficking of charged molecules in and out of mitochondria, a general reduction of cell viability and mitochondrial respiration was detected in neuroblastoma cells and primary cortical neurons exposed to Aβ oligomers. Interestingly, the toxic effect mediated by Aβ oligomers was counteracted by the use of NHK1, a small synthetic, cell-penetrating peptide that binds and modulates VDAC1. On these results, VDAC1 emerges as a crucial molecule in mitochondrial dysfunction in AD and as a promising pharmacological target for the development of new therapeutic avenues for this devastating neurodegenerative disease still without a cure.
Collapse
Affiliation(s)
- Fabrizio Cavallaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Pietro Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefania Zimbone
- Institute of Crystallography, National Research Council (CNR-IC), Catania, Italy
| | - Iolanda Rita Infantino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona Reina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological, Environmental Sciences, University of Catania, Catania, Italy
| | | | - Andrea Magrì
- Department of Biological, Geological, Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Tang J, Yang Y, He Z, Wang C, Gao Z, Meng Y, Chen X, Wang Q, Zheng G, Hu J, Chang C. Construction of dual-targeted liposomes loaded with celastrol and their application in treating intrahepatic cholangiocarcinoma. Mater Today Bio 2025; 31:101581. [PMID: 40124341 PMCID: PMC11929942 DOI: 10.1016/j.mtbio.2025.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare malignant tumor with limited treatment options. Celastrol (Cela) shows potential treatment for ICC, but its clinical use is hindered by poor water solubility and toxic side effects. To address these challenges and enhance its anti-tumor efficacy, we developed hyaluronic acid (HA)-coated triphenylphosphine complex-modified liposomes (HCTL) for accurate delivery of Cela to tumor cell mitochondria.HCTL enhances Cela's water solubility and demonstrates a high rate of encapsulation, stability, and sustained drug release behavior. Moreover, HCTL exhibits outstanding anti-ICC efficacy by efficiently inducing apoptosis in ICC cells via the mitochondrial pathway due to its precise targeting capabilities. In an in-situ ICC mouse model activated by hydrodynamic transfection of AKT and Yap, HCTL downregulates tumor-associated proliferative indices, attenuates the severity of liver injury and modulates the tumor microenvironment. Importantly, HCTL overcomes systemic toxicity associated with Cela. To sum up, HCTL is a potentially effective drug delivery system for ICC treatment.
Collapse
Affiliation(s)
- Jun Tang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yimeng Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zihan He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuting Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ziwei Gao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
| |
Collapse
|
5
|
Conti Nibali S, Magrì A, Messina A, Wagner A, Duman R, De Pinto V, Turato C, Arrigoni C, Lolicato M. Protocol for high-yield bacterial expression and purification of the voltage-dependent anion channel 1 for high-throughput biophysical assays. STAR Protoc 2025; 6:103557. [PMID: 39799574 PMCID: PMC11772971 DOI: 10.1016/j.xpro.2024.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography. In this context, we demonstrate how 2-methyl-2,4-pentanediol (MPD), a crystallization reagent, interferes with VDAC1 small-molecule binding, hindering the detection of these ligands in the crystal. For complete details on the use and execution of this protocol, please refer to Conti Nibali et al.1.
Collapse
Affiliation(s)
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, Section of Biology & Genetics, University of Catania, Catania, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cristina Arrigoni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
6
|
Dong Q, Guo Y, Lv C, Ren L, Chen B, Wang Y, Liu Y, Liu M, Liu K, Zhang N, Wang L, Sang S, Li X, Hui Y, Liang H, Gu Y. Unveiling a novel cancer hallmark by evaluation of neural infiltration in cancer. Brief Bioinform 2025; 26:bbaf082. [PMID: 40052442 PMCID: PMC11886572 DOI: 10.1093/bib/bbaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cancer cells acquire necessary functional capabilities for malignancy through the influence of the nervous system. We evaluate the extent of neural infiltration within the tumor microenvironment (TME) across multiple cancer types, highlighting its role as a cancer hallmark. We identify cancer-related neural genes using 40 bulk RNA-seq datasets across 10 cancer types, developing a predictive score for cancer-related neural infiltration (C-Neural score). Cancer samples with elevated C-Neural scores exhibit perineural invasion, recurrence, metastasis, higher stage or grade, or poor prognosis. Epithelial cells show the highest C-Neural scores among all cell types in 55 single-cell RNA sequencing datasets. The epithelial cells with high C-Neural scores (epi-highCNs) characterized by increased copy number variation, reduced cell differentiation, higher epithelial-mesenchymal transition scores, and elevated metabolic level. Epi-highCNs frequently communicate with Schwann cells by FN1 signaling pathway. The co-culture experiment indicates that Schwann cells may facilitate cancer progression through upregulation of VDAC1. Moreover, C-Neural scores positively correlate with the infiltration of antitumor immune cells, indicating potential response for immunotherapy. Melanoma patients with high C-Neural scores may benefit from trametinib. These analyses illuminate the extent of neural influence within TME, suggesting potential role as a cancer hallmark and offering implications for effective therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yingying Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Chen Lv
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Lingxue Ren
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yang Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Nan Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Linzhu Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Shaocong Sang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Xin Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Haihai Liang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150081, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| |
Collapse
|
7
|
Pastore M, Giachi A, Spínola-Lasso E, Marra F, Raggi C. Organoids and spheroids: advanced in vitro models for liver cancer research. Front Cell Dev Biol 2025; 12:1536854. [PMID: 39850799 PMCID: PMC11754960 DOI: 10.3389/fcell.2024.1536854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional in vivo animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced in vitro models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development. Spheroids are simpler 3D culture models that partially recreate tumor structure and cell interactions. They can be used for drug penetration studies and high-throughput screening. Organoids derived from stem cells or patient tissues that accurately emulate the complexity and functionality of liver tissue. They can be generated from pluripotent and adult stem cells, as well as from liver tumor specimens, providing personalized models for studying tumor behavior and drug responses. Liver organoids retain the genetic variability of the original tumor and offer a robust platform for high-throughput drug screening and personalized treatment strategies. However, both organoids and spheroids have limitations, such as the absence of functional vasculature and immune components, which are essential for tumor growth and therapeutic responses. The field of preclinical modeling is evolving, with ongoing efforts to develop more predictive and personalized models that reflect the complexities of human liver cancer. By integrating these advanced in vitro tools, researchers can gain deeper insights into liver cancer biology and accelerate the development of novel treatments.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|