1
|
Shi CC, Zhu HY, Li H, Zeng DL, Shi XL, Zhang YY, Lu Y, Ling LJ, Wang CY, Chen DF. Regulating the balance of Th17/Treg cells in gut-lung axis contributed to the therapeutic effect of Houttuynia cordata polysaccharides on H1N1-induced acute lung injury. Int J Biol Macromol 2020; 158:52-66. [PMID: 32353505 DOI: 10.1016/j.ijbiomac.2020.04.211] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Our previous study had demonstrated that oral administration of Houttuynia cordata polysaccharides (HCP) without in vitro antiviral activity ameliorated gut and lung injuries induced by influenza A virus (IAV) in mice. However, as macromolecules, HCP was hard to be absorbed in gastrointestinal tract and had no effect on lung injury when administrated intravenously. The action mechanism of HCP was thus proposed as regulating the gut mucosal-associated lymphoid tissue (GALT). Actually, HCP treatment restored the balance of Th17/Treg cells firstly in GALT and finally in the lung. HCP reduced the expression of chemokine CCL20 in the lung and regulated the balance of Th17/Treg carrying CCR6+ (the CCL20 receptor), which was associated with specific migration of Th17/Treg cells from GALT to lung. In vitro, HCP inhibited Th17 cell differentiation through the downregulation of phospho-STAT3, whereas it promoted Treg cell differentiation by upregulating phospho-STAT5. Furthermore, its therapeutic effect was abolished in RORγt-/- or Foxp3-/- mice. These findings indicated that oral administration of macromolecular polysaccharides like HCP might ameliorate lung injury in IAV infected mice via directly regulating the balance of Th17/Treg cells in gut-lung axis. Our results provided a potential mechanism underlying the therapeutic effect of polysaccharides on pulmonary infection.
Collapse
Affiliation(s)
- Chen-Chen Shi
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Hai-Yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dong-Lin Zeng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xun-Long Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University
| | - Yun-Yi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Li-Jun Ling
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Chang-Yue Wang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Dao-Feng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Abstract
What are the rules that govern a naive T cell's prospects for survival or division after export from the thymus into the periphery? To help address these questions, we combine data from existing studies with robust mathematical models to estimate the absolute contributions of thymopoiesis, peripheral division, and loss or differentiation to the human naive CD4+ T-cell pool between the ages of 0 and 20 years. Despite their decline in frequency in the blood, total body numbers of naive CD4+ T cells increase throughout childhood and early adulthood. Our analysis shows that postthymic proliferation contributes more than double the number of cells entering the pool each day from the thymus. This ratio is preserved with age; as the thymus involutes, the average time between naive T-cell divisions in the periphery lengthens. We also show that the expected residence time of naive T cells increases with time. The naive CD4+ T-cell population thus becomes progressively less dynamic with age. Together with other studies, our results suggest a complex picture of naive T-cell homeostasis in which population size, time since export from the thymus, or time since the last division can influence a cell's prospects for survival or further divisions.
Collapse
|