1
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Ng CK, Belz GT. Innate lymphoid cells: potential targets for cancer therapeutics. Trends Cancer 2023; 9:158-171. [PMID: 36357314 DOI: 10.1016/j.trecan.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
Abstract
Innate lymphoid cells (ILCs) comprise a number of different subsets, including natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells that express receptors and signaling pathways that are highly responsive to continuously changing microenvironmental cues. In this Review, we highlight the key features of innate cells that define their capacity to respond rapidly to different environments, how this ability can drive both tumor protection (limiting tumor development) or, alternatively, tumor progression, promoting tumor dissemination and resistance to immunotherapy. We discuss how understanding the regulation of ILCs that can detect tumor cells early in a response opens the possibility of exploiting this functional plasticity to develop rational therapeutic strategies to bolster adaptive immune responses and improve patient outcomes.
Collapse
Affiliation(s)
- Chun Ki Ng
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Gabrielle T Belz
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
3
|
The Potential of Dendritic-Cell-Based Vaccines to Modulate Type 3 Innate Lymphoid Cell Populations. Int J Mol Sci 2023; 24:ijms24032403. [PMID: 36768726 PMCID: PMC9916743 DOI: 10.3390/ijms24032403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Dendritic cell (DC) vaccines are a type of immunotherapy that relies on the communication of DCs with other aspects of the immune system. DCs are potent antigen-presenting cells involved in the activation of innate immune responses and education of adaptive immunity, making them ideal targets for immunotherapies. Innate lymphoid cells (ILCs) are relatively newly identified in the field of immunology and have important roles in health and disease. The studies described here explored the communications between type 3 ILCs (ILC3s) and DCs using a murine model of DC-based vaccination. Local and systemic changes in ILC3 populations following the administration of a DC vaccine were observed, and upon challenge with B16F10 melanoma cells, changes in ILC3 populations in the lungs were observed. The interactions between DCs and ILC3s should be further explored to determine the potential that their communications could have in health, disease, and the development of immunotherapies.
Collapse
|
4
|
Jeibouei S, Shams F, Mohebichamkhorami F, Sanooghi D, Faal B, Akbari ME, Zali H. Biological and clinical review of IORT-induced wound fluid in breast cancer patients. Front Oncol 2022; 12:980513. [DOI: 10.3389/fonc.2022.980513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/22/2022] Open
Abstract
Intraoperative radiotherapy (IORT) has become a growing therapy for early-stage breast cancer (BC). Some studies claim that wound fluid (seroma), a common consequence of surgical excision in the tumor cavity, can reflect the effects of IORT on cancer inhibition. However, further research by our team and other researchers, such as analysis of seroma composition, affected cell lines, and primary tissues in two-dimensional (2D) and three-dimensional (3D) culture systems, clarified that seroma could not address the questions about IORT effectiveness in the surgical site. In this review, we mention the factors involved in tumor recurrence, direct or indirect effects of IORT on BC, and all the studies associated with BC seroma to attain more information about the impact of IORT-induced seroma to make a better decision to remove or remain after surgery and IORT. Finally, we suggest that seroma studies cannot decipher the mechanisms underlying the effectiveness of IORT in BC patients. The question of whether IORT-seroma has a beneficial effect can only be answered in a trial with a clinical endpoint, which is not even ongoing.
Collapse
|
5
|
Ghilas S, O’Keefe R, Mielke LA, Raghu D, Buchert M, Ernst M. Crosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease. Front Immunol 2022; 13:944982. [PMID: 36189323 PMCID: PMC9524271 DOI: 10.3389/fimmu.2022.944982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control. Here we provide an update on the role of innate lymphoid cells, macrophages and dendritic cells, which collectively play a critical role in epithelial barrier maintenance and provide an important linkage between the classical innate and adaptive arm of the immune system. These interactions modify the capacity of the gut epithelium to undergo continuous renewal, safeguard against tumor formation and provide feedback to the gut microbiome, which acts as a seminal contributor to cellular homeostasis of the gut.
Collapse
Affiliation(s)
- Sonia Ghilas
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ryan O’Keefe
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lisa Anna Mielke
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| |
Collapse
|
6
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H, Wang C. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front Immunol 2022; 13:844142. [PMID: 35874717 PMCID: PMC9299092 DOI: 10.3389/fimmu.2022.844142] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines, etc. The interactions between these components, which are divided into anti-tumor and pro-tumor, determine the trend of anti-tumor immunity. Although the immune system can eliminate tumor through the cancer-immune cycle, tumors appear to eventually evade from immune surveillance by shaping an immunosuppressive microenvironment. Immunotherapy reshapes the TIME and restores the tumor killing ability of anti-tumor immune cells. Herein, we review the function of immune cells within the TIME and discuss the contribution of current mainstream immunotherapeutic approaches to remolding the TIME. Changes in the immune microenvironment in different forms under the intervention of immunotherapy can shed light on better combination treatment strategies.
Collapse
Affiliation(s)
- Bingzhe Lv
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongjiang Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wei Cheng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jie Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tao Yong
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
7
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
8
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Zhao N, Zhu W, Wang J, Liu W, Kang L, Yu R, Liu B. Group 2 innate lymphoid cells promote TNBC lung metastasis via the IL-13-MDSC axis in a murine tumor model. Int Immunopharmacol 2021; 99:107924. [PMID: 34217145 DOI: 10.1016/j.intimp.2021.107924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are reportedly associated with the progression of many tumors. However, the role of ILC2s in triple-negative breast cancer (TNBC) lung metastasis remains unclear. In this study, we found that ILC2s may be a key element in the process of TNBC lung metastasis since the adoptive transfer of pulmonary ILC2s increased the numbers of metastatic lung nodules and reduced the survival of tumor-bearing mice. ILC2-promoted 4 T1 lung metastasis appears to be related to ILC2-derived IL-13. An expansion of IL-13-producing ILC2s and an elevated expression of IL-13 mRNA in pulmonary ILC2s were determined in tumor-bearing mice, in parallel with an increase in the levels of local IL-13 by ILC2 transfer. The neutralization of IL-13 reduced the increased pulmonary metastatic nodules and improved the decreased survival rate caused by ILC2-adoptive transfer. Interestingly, adoptive transfer of ILC2s elevated IL-13Ra1 expression in myeloid-derived suppressor cells (MDSCs). Treatment of ILC2-transferred tumor-bearing mice with anti-IL-13 antibodies significantly diminished the number of pulmonary MDSCs and inhibited MDSC activation. Moreover, when pulmonary MDSCs were cocultured with ILC2s in the presence of an anti-IL-13 mAb, the number and activation of MDSCs were reduced. Depletion of MDSCs may promote the proliferation of CD4+ T cells and CD8+ T cells, but reduce the expansion of regulatory T cells (Tregs) in the lungs of ILC2-transferred tumor-bearing mice. Our results suggest that pulmonary ILC2s may promote TNBC lung metastasis via the ILC2-derived IL-13-activated MDSC pathway.
Collapse
Affiliation(s)
- Na Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China; Department of Medical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenwen Zhu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Jia Wang
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Weiwei Liu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Longdan Kang
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Rui Yu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Beixing Liu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China.
| |
Collapse
|
10
|
Tumor-Derived Lactic Acid Contributes to the Paucity of Intratumoral ILC2s. Cell Rep 2021; 30:2743-2757.e5. [PMID: 32101749 DOI: 10.1016/j.celrep.2020.01.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/18/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are abundant in non-lymphoid tissues and increase following infectious and inflammatory insults. In solid tumors, however, ILC2s constitute a relatively small proportion of immune cells. Here, we show, using melanoma as a model, that while the IL-33/IL C2/eosinophil axis suppresses tumor growth, tumor-derived lactate attenuates the function and survival of ILC2s. Melanomas with reduced lactate production (LDHAlow) are growth delayed and typified by an increased number of ILC2s compared with control tumors. Upon IL-33 stimulation, ILC2s accompanied by eosinophils more effectively restrain the growth of LDHAlow tumors than control melanomas. Furthermore, database analysis reveals a negative correlation between the expression of LDHA and markers associated with ILC2s and the association of high expression of IL33 and an eosinophil marker SIGLEC8 with better overall survival in human cutaneous melanoma patients. This work demonstrates that the balance between the IL-33/ILC2/eosinophil axis and lactate production by tumor cells regulates melanoma growth.
Collapse
|
11
|
|
12
|
Kindermann M, Knipfer L, Obermeyer S, Müller U, Alber G, Bogdan C, Schleicher U, Neurath MF, Wirtz S. Group 2 Innate Lymphoid Cells (ILC2) Suppress Beneficial Type 1 Immune Responses During Pulmonary Cryptococcosis. Front Immunol 2020; 11:209. [PMID: 32117319 PMCID: PMC7034304 DOI: 10.3389/fimmu.2020.00209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen preferentially causing disease in immunocompromised individuals such as organ-transplant-recipients, patients receiving immunosuppressive medications or, in particular, individuals suffering from HIV infection. Numerous studies clearly indicated that the control of C. neoformans infections is strongly dependent on a prototypic type 1 immune response and classical macrophage activation, whereas type 2-biased immunity and alternative activation of macrophages has been rather implicated in disease progression and detrimental outcomes. However, little is known about regulatory pathways modulating and balancing immune responses during early phases of pulmonary cryptococcosis. Here, we analyzed the role of group 2 innate lymphoid cells (ILC2s) for the control of C. neoformans infection. Using an intranasal infection model with a highly virulent C. neoformans strain, we found that ILC2 numbers were strongly increased in C. neoformans-infected lungs along with induction of a type 2 response. Mice lacking ILC2s due to conditional deficiency of the transcription factor RAR-related orphan receptor alpha (Rora) displayed a massive downregulation of features of type 2 immunity as reflected by reduced levels of the type 2 signature cytokines IL-4, IL-5, and IL-13 at 14 days post-infection. Moreover, ILC2 deficiency was accompanied with increased type 1 immunity and classical macrophage activation, while the pulmonary numbers of eosinophils and alternatively activated macrophages were reduced in these mice. Importantly, this shift in pulmonary macrophage polarization in ILC2-deficient mice correlated with improved fungal control and prolonged survival of infected mice. Conversely, adoptive transfer of ILC2s was associated with a type 2 bias associated with less efficient anti-fungal immunity in lungs of recipient mice. Collectively, our date indicate a non-redundant role of ILC2 in orchestrating myeloid anti-cryptococcal immune responses toward a disease exacerbating phenotype.
Collapse
Affiliation(s)
- Markus Kindermann
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Knipfer
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Obermeyer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Uwe Müller
- Centre for Biotechnology and Biomedicine, Institute of Immunology, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Centre for Biotechnology and Biomedicine, Institute of Immunology, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
An Z, Flores-Borja F, Irshad S, Deng J, Ng T. Pleiotropic Role and Bidirectional Immunomodulation of Innate Lymphoid Cells in Cancer. Front Immunol 2020; 10:3111. [PMID: 32117199 PMCID: PMC7010811 DOI: 10.3389/fimmu.2019.03111] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are largely tissue resident and respond rapidly toward the environmental signals from surrounding tissues and other immune cells. The pleiotropic function of ILCs in diverse contexts underpins its importance in the innate arm of immune system in human health and disease. ILCs derive from common lymphoid progenitors but lack adaptive antigen receptors and functionally act as the innate counterpart to T-cell subsets. The classification of different subtypes is based on their distinct transcription factor requirement for development as well as signature cytokines that they produce. The discovery and subsequent characterization of ILCs over the past decade have mainly focused on the regulation of inflammation, tissue remodeling, and homeostasis, whereas the understanding of the multiple roles and mechanisms of ILCs in cancer is still limited. Emerging evidence of the potent immunomodulatory properties of ILCs in early host defense signifies a major advance in the use of ILCs as promising targets in cancer immunotherapy. In this review, we will decipher the non-exclusive roles of ILCs associated with both protumor and antitumor activities. We will also dissect the heterogeneity, plasticity, genetic evidence, and dysregulation in different cancer contexts, providing a comprehensive understanding of the complexity and diversity. These will have implications for the therapeutic targeting in cancer.
Collapse
Affiliation(s)
- Zhengwen An
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
| | - Fabian Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sheeba Irshad
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
| | - Tony Ng
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
14
|
Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic targeting of trained immunity. Nat Rev Drug Discov 2020; 18:553-566. [PMID: 30967658 DOI: 10.1038/s41573-019-0025-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunotherapy is revolutionizing the treatment of diseases in which dysregulated immune responses have an important role. However, most of the immunotherapy strategies currently being developed engage the adaptive immune system. In the past decade, both myeloid (monocytes, macrophages and dendritic cells) and lymphoid (natural killer cells and innate lymphoid cells) cell populations of the innate immune system have been shown to display long-term changes in their functional programme through metabolic and epigenetic programming. Such reprogramming causes these cells to be either hyperresponsive or hyporesponsive, resulting in a changed immune response to secondary stimuli. This de facto innate immune memory, which has been termed 'trained immunity', provides a powerful 'targeting framework' to regulate the delicate balance of immune homeostasis, priming, training and tolerance. In this Opinion article, we set out our vision of how to target innate immune cells and regulate trained immunity to achieve long-term therapeutic benefits in a range of immune-related diseases. These include conditions characterized by excessive trained immunity, such as inflammatory and autoimmune disorders, allergies and cardiovascular disease and conditions driven by defective trained immunity, such as cancer and certain infections.
Collapse
Affiliation(s)
- Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands. .,Department of Medical Biochemistry, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands.
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Transplant Immunology Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands. .,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Deng S, Clowers MJ, Velasco WV, Ramos-Castaneda M, Moghaddam SJ. Understanding the Complexity of the Tumor Microenvironment in K-ras Mutant Lung Cancer: Finding an Alternative Path to Prevention and Treatment. Front Oncol 2020; 9:1556. [PMID: 32039025 PMCID: PMC6987304 DOI: 10.3389/fonc.2019.01556] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene (K-ras) is a well-documented, frequently mutated gene in lung cancer. Since K-ras regulates numerous signaling pathways related to cell survival and proliferation, mutations in this gene are powerful drivers of tumorigenesis and confer prodigious survival advantages to developing tumors. These malignant cells dramatically alter their local tissue environment and in the process recruit a powerful ally: inflammation. Inflammation in the context of the tumor microenvironment can be described as either antitumor or protumor (i.e., aiding or restricting tumor progression, respectively). Many current treatments, like immune checkpoint blockade, seek to augment antitumor inflammation by alleviating inhibitory signaling in cytotoxic T cells; however, a burgeoning area of research is now focusing on ways to modulate and mitigate protumor inflammation. Here, we summarize the interplay of tumor-promoting inflammation and K-ras mutant lung cancer pathogenesis by exploring the cytokines, signaling pathways, and immune cells that mediate this process.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Michael J Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Walter V Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
16
|
Critical Roles of Balanced Innate Lymphoid Cell Subsets in Intestinal Homeostasis, Chronic Inflammation, and Cancer. J Immunol Res 2019; 2019:1325181. [PMID: 31781671 PMCID: PMC6875018 DOI: 10.1155/2019/1325181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) comprise a recently identified subset of innate immune cells that are mainly localized to mucosa-associated tissues. Although they have not yet been fully characterized, they can generally be divided into ILC1s, ILC2s, and ILC3s. ILCs and their corresponding cytokines act as important mediators of the early stages of the immune response during inflammation, tissue repair, and the maintenance of epithelial integrity. Consequently, the dysregulation of ILC subsets might promote inflammation and cancer. Numerous studies have demonstrated that these cells play an important role in maintaining the microecological balance of the small intestine; however, their specific roles in mediating inflammation in this tissue and tumorigenesis remain unclear and controversial. In this review, we focus on recent progress that has helped to gain a better understanding of the role of ILCs in intestinal homeostasis, chronic inflammation, and cancer. Further focused research on the regulation and role of ILCs in intestinal homeostasis and pathology will help to reveal valuable diagnostic and therapeutic targets for the treatment of intestinal diseases.
Collapse
|
17
|
Hosseini SH, Sharafkandi N, Seyfizadeh N, Hemmatzadeh M, Marofi F, Shomali N, Karimi M, Mohammadi H. Progression or suppression: Two sides of the innate lymphoid cells in cancer. J Cell Biochem 2019; 121:2739-2755. [PMID: 31680296 DOI: 10.1002/jcb.29503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) as key players in innate immunity have been shown to be significantly associated with inflammation, lymphoid neogenesis, tissue remodeling, mucosal immunity and lately have been considered a remarkable nominee for either tumor-promoting or tumor-inhibiting functions. This dual role of ILCs, which is driven by intrinsic and extrinsic factors like plasticity of ILCs and the tumor microenvironment, respectively, has aroused interest in ILCs subsets in past decade. So far, numerous studies in the cancer field have revealed ILCs to be key players in the initiation, progression and inhibition of tumors, therefore providing valuable insights into therapeutic approaches to utilize the immune system against cancer. Herein, the most recent achievements regarding ILCs subsets including new classifications, their transcription factors, markers, cytokine release and mechanisms that led to either progression or inhibition of many tumors have been evaluated. Additionally, the available data regarding ILCs in most prevalent cancers and new therapeutic approaches are summarized.
Collapse
Affiliation(s)
- S Haleh Hosseini
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
18
|
Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res 2019; 79:4557-4566. [PMID: 31350295 DOI: 10.1158/0008-5472.can-18-3962] [Citation(s) in RCA: 2084] [Impact Index Per Article: 347.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/28/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022]
Abstract
Cancer development and progression occurs in concert with alterations in the surrounding stroma. Cancer cells can functionally sculpt their microenvironment through the secretion of various cytokines, chemokines, and other factors. This results in a reprogramming of the surrounding cells, enabling them to play a determinative role in tumor survival and progression. Immune cells are important constituents of the tumor stroma and critically take part in this process. Growing evidence suggests that the innate immune cells (macrophages, neutrophils, dendritic cells, innate lymphoid cells, myeloid-derived suppressor cells, and natural killer cells) as well as adaptive immune cells (T cells and B cells) contribute to tumor progression when present in the tumor microenvironment (TME). Cross-talk between cancer cells and the proximal immune cells ultimately results in an environment that fosters tumor growth and metastasis. Understanding the nature of this dialog will allow for improved therapeutics that simultaneously target multiple components of the TME, increasing the likelihood of favorable patient outcomes.
Collapse
Affiliation(s)
- Dominique C Hinshaw
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A Shevde
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Xiong J, Wang H, He J, Wang Q. Functions of Group 2 Innate Lymphoid Cells in Tumor Microenvironment. Front Immunol 2019; 10:1615. [PMID: 31354745 PMCID: PMC6635601 DOI: 10.3389/fimmu.2019.01615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILCs), defined as a heterogeneous population of lymphocytes, have received much attention over recent years. They can be categorized into three subsets according to the expression profiles of transcription factors and differing levels of cytokine production. These cells are widely distributed in human organs and tissues, especially in mucosal tissue. The ILCs are involved in various physiological and pathological processes, including inflammation, worm expulsion, autoimmune disease and tumor progression, many of which have been investigated and clarified in recent studies. In the tumor microenvironment, group 2 innate lymphoid cells (ILC2s) have been proved to be able to either promote or inhibit tumor progression by producing different cytokines, recruiting diverse types of immune cells, expressing immunosuppressive molecules and by regulating the expression of certain inflammatory factors. This review summarizes recent research progress on the immunomodulatory functions of ILC2s in the tumor microenvironment and puts forward some perspectives for future study.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Haofei Wang
- Department of Pharmacology, China Medical University School of Pharmacy, Shenyang, China
| | - Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Koh J, Kim HY, Lee Y, Park IK, Kang CH, Kim YT, Kim JE, Choi M, Lee WW, Jeon YK, Chung DH. IL23-Producing Human Lung Cancer Cells Promote Tumor Growth via Conversion of Innate Lymphoid Cell 1 (ILC1) into ILC3. Clin Cancer Res 2019; 25:4026-4037. [PMID: 30979738 DOI: 10.1158/1078-0432.ccr-18-3458] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/15/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The plasticity of innate lymphoid cells (ILCs) has been reported in vitro and in the microenvironment of the intestine. However, whether ILC plasticity contributes to regulation of the tumor microenvironment remains unknown. In this study, we explored plasticity of ILCs in human lung cancer. EXPERIMENTAL DESIGN We analyzed immune subsets and cytokine expression in lung cancers freshly obtained from 80 patients and explored conversion of ILC1 into ILC3 in coculture with lung cancer cells. Prognostic effects of converted ILC3 and related pathway were evaluated by retrospective cohort composed of 875 patients with lung cancer. RESULTS Low percentages of ILC1, and high percentages of ILC3 were found in pulmonary squamous cell carcinomas (SqCC) but not adenocarcinomas (ADC). In non-small-cell lung cancers, the percentage of ILC3 was associated with IL23 expression in tumor cells but not immune cells. In cocultures, tumor cells of SqCCs converted ILC1 into ILC3 by producing IL23, thus promoting IL17-mediated tumor cell proliferation. Consistently, among IL17+ immune cells, the percentages of ILCs were higher in SqCCs than ADCs. Furthermore, the numbers of CD3-RORγt+ ILC3, IL17 expression level, and IL23- or IL17RA-expressing tumor cells were associated with short survival of patients with SqCC but not ADC. CONCLUSIONS Conversion from ILC1 into ILC3 by IL23-producing SqCCs promotes IL17-mediated tumor progression, resulting in a poor prognosis.
Collapse
Affiliation(s)
- Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunity, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In Kyu Park
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Hyun Kang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Pathology, Seoul Metropolitan Government Boramae Hospital, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Woo Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea. .,Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Landskron G, De la Fuente López M, Dubois-Camacho K, Díaz-Jiménez D, Orellana-Serradell O, Romero D, Sepúlveda SA, Salazar C, Parada-Venegas D, Quera R, Simian D, González MJ, López-Köstner F, Kronberg U, Abedrapo M, Gallegos I, Contreras HR, Peña C, Díaz-Araya G, Roa JC, Hermoso MA. Interleukin 33/ST2 Axis Components Are Associated to Desmoplasia, a Metastasis-Related Factor in Colorectal Cancer. Front Immunol 2019; 10:1394. [PMID: 31281317 PMCID: PMC6598075 DOI: 10.3389/fimmu.2019.01394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
In colorectal cancer (CRC), cancer-associated fibroblasts (CAFs) are the most abundant component from the tumor microenvironment (TM). CAFs facilitate tumor progression by inducing angiogenesis, immune suppression and invasion, thus altering the organization/composition of the extracellular matrix (i.e., desmoplasia) and/or activating epithelial-mesenchymal transition (EMT). Soluble factors from the TM can also contribute to cell invasion through secretion of cytokines and recently, IL-33/ST2 pathway has gained huge interest as a protumor alarmin, promoting progression to metastasis by inducing changes in TM. Hence, we analyzed IL-33 and ST2 content in tumor and healthy tissue lysates and plasma from CRC patients. Tissue localization and distribution of these molecules was evaluated by immunohistochemistry (using localization reference markers α-smooth muscle actin or α-SMA and E-cadherin), and clinical/histopathological information was obtained from CRC patients. In vitro experiments were conducted in primary cultures of CAFs and normal fibroblasts (NFs) isolated from tumor and healthy tissue taken from CRC patients. Additionally, migration and proliferation analysis were performed in HT29 and HCT116 cell lines. It was found that IL-33 content increases in left-sided CRC patients with lymphatic metastasis, with localization in tumor epithelia associated with abundant desmoplasia. Although ST2 content showed similarities between tumor and healthy tissue, a decreased immunoreactivity was observed in left-sided tumor stroma, associated to metastasis related factors (advanced stages, abundant desmoplasia, and presence of tumor budding). A principal component analysis (including stromal and epithelial IL-33/ST2 and α-SMA immunoreactivity with extent of desmoplasia) allowed us to distinguish clusters of low, intermediate and abundant desmoplasia, with potential to develop a diagnostic signature with benefits for further therapeutic targets. IL-33 transcript levels from CAFs directly correlated with CRC cell line migration induced by CAFs conditioned media, with rhIL-33 inducing a mesenchymal phenotype in HT29 cells. These results indicate a role of IL-33/ST2 in tumor microenvironment, specifically in the interaction between CAFs and epithelial tumor cells, thus contributing to invasion and metastasis in left-sided CRC, most likely by activating desmoplasia.
Collapse
Affiliation(s)
- Glauben Landskron
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Marjorie De la Fuente López
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile.,Research Sub-direction, Academic Direction, Clinica Las Condes, Santiago, Chile
| | - Karen Dubois-Camacho
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - David Díaz-Jiménez
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Octavio Orellana-Serradell
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Diego Romero
- Pathology Department, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Santiago A Sepúlveda
- Pathology Department, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Christian Salazar
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Daniela Parada-Venegas
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Rodrigo Quera
- Inflammatory Bowel Disease Program, Gastroenterology Department, Clinica Las Condes, Santiago, Chile
| | - Daniela Simian
- Research Sub-direction, Academic Direction, Clinica Las Condes, Santiago, Chile
| | - María-Julieta González
- Cell and Molecular Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | - Udo Kronberg
- Coloproctology Department, Clinica Las Condes, Santiago, Chile
| | - Mario Abedrapo
- Coloproctology Department, Clinica Las Condes, Santiago, Chile.,Coloproctology Surgery Department, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Iván Gallegos
- Pathology Department, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Héctor R Contreras
- Department of Basic and Clinic Oncology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristina Peña
- Medical Oncology Department, Ramon y Cajal University Hospital, IRYCIS, CIBERONC, Madrid, Spain
| | - Guillermo Díaz-Araya
- Molecular Pharmacology Laboratory, Faculty of Chemical Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Pathology Department, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Marcela A Hermoso
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
23
|
Mariotti FR, Quatrini L, Munari E, Vacca P, Moretta L. Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological Conditions. Front Immunol 2019; 10:910. [PMID: 31105707 PMCID: PMC6498986 DOI: 10.3389/fimmu.2019.00910] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Innate lymphoid cells (ILCs) belong to a family of immune cells. Recently, ILCs have been classified into five different groups that mirror the function of adaptive T cell subsets counterparts. In particular, NK cells mirror CD8+ cytotoxic T cells while ILC1, ILC2, ILC3, and Lymphoid tissue inducer (LTi)-like cells reflect the function of CD4+T helper (Th) cells (Th1, Th2, and Th17 respectively). ILCs are involved in innate host defenses against pathogens and tumors, in lymphoid organogenesis, and in tissue remodeling/repair. In recent years, important molecular inducible checkpoints (PD-1, TIM3, and TIGIT) were shown to control/inactivate different immune cell types. The expression of many of these receptors has been detected on NK cells and subsets of tissue-resident ILCs in both physiological and pathological conditions, including cancer. In particular, it has been demonstrated that the interaction between PD-1+ immune cells and PD-L1/PD-L2+ tumor cells may compromise the anti-tumor effector function leading to tumor immune escape. However, while the effector function of NK cells in tumor is well-established, limited information exists on the other ILC subsets. We will summarize what is known to date on the expression and function of these checkpoint receptors on NK cells and ILCs, with a particular focus on the recent data that reveal an essential contribution of the blockade of PD-1 and TIGIT on NK cells to the immunotherapy of cancer. A better information regarding the presence and the function of different ILCs and of the inhibitory checkpoints in pathological conditions may offer important clues for the development of new immune therapeutic strategies.
Collapse
Affiliation(s)
| | - Linda Quatrini
- Department of Immunology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Munari
- Department of Pathology, Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Paola Vacca
- Department of Immunology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
24
|
Bruchard M, Ghiringhelli F. Deciphering the Roles of Innate Lymphoid Cells in Cancer. Front Immunol 2019; 10:656. [PMID: 31024531 PMCID: PMC6462996 DOI: 10.3389/fimmu.2019.00656] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cancer is a complex disease and the role played by innate lymphoid cells (ILCs) in cancer development has begun to be uncovered over recent years. We aim to provide an exhaustive summary of the knowledge acquired on the role of ILCs in cancer. ILCs are classified into 3 different categories, ILC1s, ILC2s, and ILC3s, each encompassing specific and unique functions. ILC1s exhibit NK cells characteristics and can exert anti-tumor functions, but surprisingly their IFNγ production is not associated with a better immune response. In response to TGF-β or IL-12, ILC1s were shown to exert pro-tumor functions and to favor tumor growth. ILC2s role in cancer immune response is dependent on cytokine context. The production of IL-13 by ILC2s is associated with a negative outcome in cancer. ILC2s can also produce IL-5, leading to eosinophil activation and an increased anti-tumor immune response in lung cancer. ILC3s produce IL-22, which could promote tumor growth. In contrast, ILC3s recognize tumor cells and facilitate leukocyte tumor entry, increasing anti-tumor immunity. In some contexts, ILC3s were found at the edge of tertiary lymphoid structures, associated with a good prognostic. We are at the dawn of our understanding of ILCs role in cancer. This review aims to thoroughly analyze existing data and to provide a comprehensive overview of our present knowledge on the impact of ILCs in cancer.
Collapse
Affiliation(s)
- Melanie Bruchard
- INSERM UMR1231, Dijon, France.,University of Burgundy and Franche-Comté, Dijon, France
| | - Francois Ghiringhelli
- INSERM UMR1231, Dijon, France.,University of Burgundy and Franche-Comté, Dijon, France
| |
Collapse
|
25
|
Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol 2019; 12:299-311. [PMID: 30664706 PMCID: PMC6436699 DOI: 10.1038/s41385-018-0130-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate lymphocytes with important immune and homeostatic functions at multiple tissue sites, especially the lung. These cells expand locally after birth and during postnatal lung maturation and are present in the lung and other peripheral organs. They are modified by a variety of processes and mediate inflammatory responses to respiratory pathogens, inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in pulmonary homeostasis and discuss recent and surprising advances in our understanding of how hormones, age, neurotransmitters, environmental challenges, and infection influence ILC2s. We also review how these responses may underpin the development, progression and severity of pulmonary inflammation and chronic lung diseases and highlight some of the remaining challenges for ILC2 biology.
Collapse
|
26
|
Atreya I, Kindermann M, Wirtz S. Innate lymphoid cells in intestinal cancer development. Semin Immunol 2019; 41:101267. [PMID: 30772139 DOI: 10.1016/j.smim.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a highly prominent cause of cancer-related deaths worldwide. Although the functions of immune cells in the colorectal tumor microenvironment are complex and heterogeneous, dysregulated changes in the composition and activation state of immune cells are believed to represent key events supporting the establishment of pro- or anti-tumorigenic immune states. Recently, innate lymphoid cells (ILCs) emerged as central innate immune mediators during both gastrointestinal homeostasis and inflammatory pathologies. Hence, ILCs might also represent promising targets in the context of cancer therapy and are increasingly recognized as innate immune cells with potent immunomodulatory properties. In this review, we summarize the pleiotropic roles of the different ILC subsets for intestinal homeostasis and discuss the recent evidence on their potential involvement in the development and growth of intestinal cancers.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Markus Kindermann
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany.
| |
Collapse
|
27
|
Huang Q, Cao W, Mielke LA, Seillet C, Belz GT, Jacquelot N. Innate Lymphoid Cells in Colorectal Cancers: A Double-Edged Sword. Front Immunol 2019; 10:3080. [PMID: 32010138 PMCID: PMC6974476 DOI: 10.3389/fimmu.2019.03080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
The immune system plays a fundamental role at mucosal barriers in maintaining tissue homeostasis. This is particularly true for the gut where cells are flooded with microbial-derived signals and antigens, which constantly challenge the integrity of the intestinal barrier. Multiple immune cell populations equipped with both pro- and anti-inflammatory functions reside in the gut tissue and these cells tightly regulate intestinal health and functions. Dysregulation of this finely tuned system can progressively lead to autoimmune disease and inflammation-driven carcinogenesis. Over the last decade, the contribution of the adaptive immune system in controlling colorectal cancer has been studied in detail, but the role of the innate system, particularly innate lymphoid cells (ILCs), have been largely overlooked. By sensing their microenvironment, ILCs are essential in supporting gut epithelium repair and controling bacterial- and helminth-mediated intestinal infections, highlighting their important role in maintaining tissue integrity. Accumulating evidence also suggests that they may play an important role in carcinogenesis including intestinal cancers. In this review, we will explore the current knowledge about the pro- and anti-tumor functions of ILCs in colorectal cancer.
Collapse
Affiliation(s)
- Qiutong Huang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Wang Cao
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lisa Anna Mielke
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gabrielle T. Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Gabrielle T. Belz
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Nicolas Jacquelot
| |
Collapse
|
28
|
Joseph AM, Monticelli LA, Sonnenberg GF. Metabolic regulation of innate and adaptive lymphocyte effector responses. Immunol Rev 2018; 286:137-147. [PMID: 30294971 PMCID: PMC6195227 DOI: 10.1111/imr.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
Innate and adaptive lymphocytes employ diverse effector programs that provide optimal immunity to pathogens and orchestrate tissue homeostasis, or conversely can become dysregulated to drive progression of chronic inflammatory diseases. Emerging evidence suggests that CD4+ T helper cell subsets and their innate counterparts, the innate lymphoid cell family, accomplish these complex biological roles by selectively programming their cellular metabolism in order to instruct distinct modules of lymphocyte differentiation, proliferation, and cytokine production. Further, these metabolic pathways are significantly influenced by tissue microenvironments and disease states. Here, we summarize our current knowledge on how cell-intrinsic metabolic factors modulate the context-dependent bioenergetic pathways that govern innate and adaptive lymphocytes. Further, we propose that a greater understanding of these pathways may lead to the identification of unique features in each population and provoke the development of novel therapeutic strategies to modulate lymphocytes in health and disease.
Collapse
Affiliation(s)
- Ann M Joseph
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, New York, New York
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
| | - Laurel A Monticelli
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, New York, New York
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
| |
Collapse
|
29
|
Abstract
Innate lymphoid cells (ILC) are a recently identified group of innate lymphocytes that are preferentially located at barrier surfaces. Barrier surfaces are in direct contact with complex microbial ecosystems, collectively referred to as the microbiota. It is now believed that the interplay of the microbiota with host components (i.e. epithelial cells and immune cells) promotes host fitness by regulating organ homeostasis, metabolism, and host defense against pathogens. In this review, we will give an overview of this multifaceted interplay between ILC and components of the microbiota.
Collapse
Affiliation(s)
- Liudmila Britanova
- Research Centre Immunotherapy and Institute of Microbiology and Hygiene, Mainz, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Charité - Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
30
|
Albini A, Bruno A, Noonan DM, Mortara L. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy. Front Immunol 2018; 9:527. [PMID: 29675018 PMCID: PMC5895776 DOI: 10.3389/fimmu.2018.00527] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs) and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF) and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy.,Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
31
|
Soldati L, Di Renzo L, Jirillo E, Ascierto PA, Marincola FM, De Lorenzo A. The influence of diet on anti-cancer immune responsiveness. J Transl Med 2018; 16:75. [PMID: 29558948 PMCID: PMC5859494 DOI: 10.1186/s12967-018-1448-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has matured into standard treatment for several cancers, but much remains to be done to extend the reach of its effectiveness particularly to cancers that are resistant within each indication. This review proposes that nutrition can affect and potentially enhance the immune response against cancer. The general mechanisms that link nutritional principles to immune function and may influence the effectiveness of anticancer immunotherapy are examined. This represents also the premise for a research project aimed at identifying the best diet for immunotherapy enhancement against tumours (D.I.E.T project). Particular attention is turned to the gut microbiota and the impact of its composition on the immune system. Also, the dietary patterns effecting immune function are discussed including the value of adhering to a healthy diets such as the Mediterranean, Veg, Japanese, or a Microbiota-regulating diet, the very low ketogenic diet, which have been demonstrated to lower the risk of developing several cancers and reduce the mortality associated with them. Finally, supplements, as omega-3 and polyphenols, are discussed as potential approaches that could benefit healthy dietary and lifestyle habits in the context of immunotherapy.
Collapse
Affiliation(s)
- Laura Soldati
- Department of Health Sciences, Università degli Studi di Milano, Via A di Rudinì 8, 20124, Milan, Italy.
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, 70124, Bari, Italy
| | - Paolo A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Via Mariano Semmola snc, 80131, Naples, Italy
| | | | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
32
|
Jensen-Jarolim E, Bax HJ, Bianchini R, Crescioli S, Daniels-Wells TR, Dombrowicz D, Fiebiger E, Gould HJ, Irshad S, Janda J, Josephs DH, Levi-Schaffer F, O'Mahony L, Pellizzari G, Penichet ML, Redegeld F, Roth-Walter F, Singer J, Untersmayr E, Vangelista L, Karagiannis SN. AllergoOncology: Opposite outcomes of immune tolerance in allergy and cancer. Allergy 2018; 73:328-340. [PMID: 28921585 PMCID: PMC6038916 DOI: 10.1111/all.13311] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 12/11/2022]
Abstract
While desired for the cure of allergy, regulatory immune cell subsets and nonclassical Th2-biased inflammatory mediators in the tumour microenvironment can contribute to immune suppression and escape of tumours from immunological detection and clearance. A key aim in the cancer field is therefore to design interventions that can break immunological tolerance and halt cancer progression, whereas on the contrary allergen immunotherapy exactly aims to induce tolerance. In this position paper, we review insights on immune tolerance derived from allergy and from cancer inflammation, focusing on what is known about the roles of key immune cells and mediators. We propose that research in the field of AllergoOncology that aims to delineate these immunological mechanisms with juxtaposed clinical consequences in allergy and cancer may point to novel avenues for therapeutic interventions that stand to benefit both disciplines.
Collapse
Affiliation(s)
- E Jensen-Jarolim
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - H J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - R Bianchini
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - S Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - T R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D Dombrowicz
- INSERM, CHU Lille, European Genomic Institute of Diabetes, Institut Pasteur de Lille, U1011 - Recepteurs Nucleaires, Maladies Cardiovasculaires et Diabete, Universite de Lille, Lille, France
| | - E Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department Medicine Research, Childrens' University Hospital Boston, Boston, MA, USA
| | - H J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - S Irshad
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - J Janda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - D H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - F Levi-Schaffer
- Faculty of Medicine, Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - G Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - M L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - F Redegeld
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - F Roth-Walter
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - J Singer
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - E Untersmayr
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - L Vangelista
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
33
|
Bonne-Année S, Nutman TB. Human innate lymphoid cells (ILCs) in filarial infections. Parasite Immunol 2018; 40:10.1111/pim.12442. [PMID: 28504838 PMCID: PMC5685925 DOI: 10.1111/pim.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections.
Collapse
Affiliation(s)
- S Bonne-Année
- Laboratory of Parasitic Diseases, Helminth Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T B Nutman
- Laboratory of Parasitic Diseases, Helminth Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Trabanelli S, Gomez-Cadena A, Salomé B, Michaud K, Mavilio D, Landis BN, Jandus P, Jandus C. Human innate lymphoid cells (ILCs): Toward a uniform immune-phenotyping. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:392-399. [PMID: 29244250 DOI: 10.1002/cyto.b.21614] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
Helper innate lymphoid cells (ILCs), the most recently identified population of the ILC family, play a fundamental role in the restoration of tissue integrity, in the protection against infiltrating pathogens as well as in tumor immune-surveillance. ILCs have been divided into three main subsets, ILC1, ILC2, and ILC3, that can be specifically activated by different signals coming either indirectly from pathogens or from other cell populations, including cancer cells. Following activation, ILCs are in turn able to promptly secrete a wide range of soluble mediators that modulate effector cell functions. The discovery and the study of these immune cells is now offering important opportunities for innovative therapies of allergic airway diseases, inflammatory disorders and might be crucial for the discovery of new targets for the therapy of cancer. It is therefore fundamental that the scientific community establishes harmonized guidelines to obtain a consensus in the identification and phenotypical and functional characterization of ILCs. © 2018 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Sara Trabanelli
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | | | - Bérengère Salomé
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Katarzyna Michaud
- University Center of Legal Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano-Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Basile Nicolas Landis
- Rhinology-Olfactology Unit, Otolaryngology Head & Neck Surgery Department, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, Department of Medical Specialities, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Camilla Jandus
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Li S, Bostick JW, Zhou L. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Front Immunol 2018; 8:1909. [PMID: 29354125 PMCID: PMC5760495 DOI: 10.3389/fimmu.2017.01909] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes- group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host-environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John W. Bostick
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Guillerey C, Smyth MJ. Cancer Immunosurveillance by Natural Killer Cells and Other Innate Lymphoid Cells. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
37
|
Sadozai H, Gruber T, Hunger RE, Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front Immunol 2017; 8:1617. [PMID: 29276510 PMCID: PMC5727014 DOI: 10.3389/fimmu.2017.01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
The global health burden associated with melanoma continues to increase while treatment options for metastatic melanoma are limited. Nevertheless, in the past decade, the field of cancer immunotherapy has witnessed remarkable advances for the treatment of a number of malignancies including metastatic melanoma. Although the earliest observations of an immunological antitumor response were made nearly a century ago, it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic option, in particular for cutaneous melanoma. As such, melanoma remains the focus of various preclinical and clinical studies to understand the immunobiology of cancer and to test various tumor immunotherapies. Here, we review key recent developments in the field of immune-mediated therapy of melanoma. Our primary focus is on therapies that have received regulatory approval. Thus, a brief overview of the pathophysiology of melanoma is provided. The purported functions of various tumor-infiltrating immune cell subsets are described, in particular the recently described roles of intratumoral dendritic cells. The section on immunotherapies focuses on strategies that have proved to be the most clinically successful such as immune checkpoint blockade. Prospects for novel therapeutics and the potential for combinatorial approaches are delineated. Finally, we briefly discuss nanotechnology-based platforms which can in theory, activate multiple arms of immune system to fight cancer. The promising advances in the field of immunotherapy signal the dawn of a new era in cancer treatment and warrant further investigation to understand the opportunities and barriers for future progress.
Collapse
Affiliation(s)
- Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Seager RJ, Hajal C, Spill F, Kamm RD, Zaman MH. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017; 3. [PMID: 30079253 DOI: 10.1088/2057-1739/aa7e86] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the tumour microenvironment, cancer cells directly interact with both the immune system and the stroma. It is firmly established that the immune system, historically believed to be a major part of the body's defence against tumour progression, can be reprogrammed by tumour cells to be ineffective, inactivated, or even acquire tumour promoting phenotypes. Likewise, stromal cells and extracellular matrix can also have pro-and anti-tumour properties. However, there is strong evidence that the stroma and immune system also directly interact, therefore creating a tripartite interaction that exists between cancer cells, immune cells and tumour stroma. This interaction contributes to the maintenance of a chronically inflamed tumour microenvironment with pro-tumorigenic immune phenotypes and facilitated metastatic dissemination. A comprehensive understanding of cancer in the context of dynamical interactions of the immune system and the tumour stroma is therefore required to truly understand the progression toward and past malignancy.
Collapse
Affiliation(s)
- R J Seager
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215
| | - Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Fabian Spill
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215.,Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215.,Howard Hughes Medical Institute, Boston University, Boston, MA 02215
| |
Collapse
|
39
|
Mortara L, Benest AV, Bates DO, Noonan DM. Can the co-dependence of the immune system and angiogenesis facilitate pharmacological targeting of tumours? Curr Opin Pharmacol 2017. [PMID: 28623714 DOI: 10.1016/j.coph.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumours elicit a number of mechanisms to induce a reprogramming of innate and adaptive immune cells to their advantage, inducing a pro-angiogenic phenotype. Investigation of these events is now leading to the identification of specific myeloid and lymphoid cell-targeted therapies, as well as of unexplored off-target activities of clinically relevant chemotherapeutic and metabolic drugs. It is also leading to an enhanced understanding of the interplay between angiogenesis and the immune system, and the value of novel co-targeting approaches using both immunotherapy and anti-angiogenic therapy. Here, we review recently identified mechanisms and potential pharmacological approaches targeting the crosstalk between cancer cells and the host immune system, providing an overview on novel therapeutic opportunities linking immuno-oncology and anti-angiogenic therapy.
Collapse
Affiliation(s)
- Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK
| | - Douglas M Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
40
|
Chung L, Maestas DR, Housseau F, Elisseeff JH. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 2017; 114:184-192. [PMID: 28712923 DOI: 10.1016/j.addr.2017.07.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
The compatibility of biomaterials is critical to their structural and biological function in medical applications. The immune system is the first responder to tissue trauma and to a biomaterial implant. The innate immune effector cells, most notably macrophages, play a significant role in the defense against foreign bodies and the formation of a fibrous capsule around synthetic implants. Alternatively, macrophages participate in the pro-regenerative capacity of tissue-derived biological scaffolds. Research is now elucidating the role of the adaptive immune system, and T cells in particular, in directing macrophage response to synthetic and biological materials. Here, we review basic immune cell types and discuss recent research on the role of the immune system in tissue repair and its potential relevance to scaffold design. We will also discuss new emerging immune cell types relevant to biomaterial responses and tissue repair. Finally, prospects for specifically targeting and modulating the immune response to biomaterial scaffolds for enhancing tissue repair and regeneration will be presented.
Collapse
|