1
|
Qiao Y, Yang R, Liu Y, Chen J, Zhao L, Huo P, Wang Z, Bu D, Wu Y, Zhao Y. DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures. Comput Struct Biotechnol J 2024; 23:617-625. [PMID: 38274994 PMCID: PMC10808905 DOI: 10.1016/j.csbj.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) are key post-transcriptional regulators, and the malfunctions of RBP-RNA binding lead to diverse human diseases. However, prediction of RBP binding sites is largely based on RNA sequence features, whereas in vivo RNA structural features based on high-throughput sequencing are rarely incorporated. Here, we designed a deep bimodal information fusion network called DeepFusion for unraveling protein-RNA interactions by incorporating structural features derived from DMS-seq data. DeepFusion integrates two sub-models to extract local motif-like information and long-term context information. We show that DeepFusion performs best compared with other cutting-edge methods with only sequence inputs on two datasets. DeepFusion's performance is further improved with bimodal input after adding in vivo DMS-seq structural features. Furthermore, DeepFusion can be used for analyzing RNA degradation, demonstrating significantly different RBP-binding scores in genes with slow degradation rates versus those with rapid degradation rates. DeepFusion thus provides enhanced abilities for further analysis of functional RNAs. DeepFusion's code and data are available at http://bioinfo.org/deepfusion/.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yang
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Chen
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Lianhe Zhao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Peipei Huo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihao Wang
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lenárt M, Bober P, Marcin M, Tkáčiková S, Kacírová M, Alexovič M, Tóth D, Madárová N, Radoňak J, Urdzík P, Fedačko J, Sabo J. Peripheral Blood CD8 + T-Lymphocyte Immune Response in Benign and Subpopulations of Breast Cancer Patients. Int J Mol Sci 2024; 25:6423. [PMID: 38928129 PMCID: PMC11204132 DOI: 10.3390/ijms25126423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Peripheral blood CD8+ T lymphocytes play a crucial role in cell-mediated immunity and tumor-related immune responses in breast cancer. In this study, label-free quantification analysis and gene set enrichment analysis (GSEA) of CD8+ T lymphocytes in the peripheral blood of benign patients and patients with different breast cancer (BC) subtypes, i.e., luminal A, luminal B, and triple-negative breast cancer (TNBC), were performed using nano-UHPLC and Orbitrap mass spectrometry. Differential protein expression in CD8+ T lymphocytes revealed significant downregulation (log2 FC ≥ 0.38 or ≤-0.38, adj. p < 0.05), particularly in proteins involved in cytotoxicity, cytolysis, and proteolysis, such as granzymes (GZMs) and perforin 1 (PRF1). This downregulation was observed in the benign group (GZMH, GZMM, and PRF1) and luminal B (GZMA, GZMH) subtypes, whereas granzyme K (GZMK) was upregulated in TNBC in comparison to healthy controls. The RNA degradation pathway was significantly downregulated (p < 0.05, normalized enrichment score (NES) from -1.47 to -1.80) across all BC subtypes, suggesting a potential mechanism for regulating gene expression during T cell activation. Also, the Sm-like proteins (LSM2, LSM3, and LSM5) were significantly downregulated in the RNA degradation pathway. Proteomic analysis of CD8+ T lymphocytes in peripheral blood across different breast cancer subtypes provides a comprehensive view of the molecular mechanisms of the systemic immune response that can significantly contribute to advancements in the diagnosis, treatment, and prognosis of this disease.
Collapse
Affiliation(s)
- Marek Lenárt
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (N.M.); (J.R.)
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| | - Miroslav Marcin
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| | - Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| | - Mária Kacírová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| | - Dávid Tóth
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Natália Madárová
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (N.M.); (J.R.)
| | - Jozef Radoňak
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (N.M.); (J.R.)
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Ján Fedačko
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| |
Collapse
|
3
|
Taniguchi T, Okahashi N, Matsuda F. 13C-metabolic flux analysis reveals metabolic rewiring in HL-60 neutrophil-like cells through differentiation and immune stimulation. Metab Eng Commun 2024; 18:e00239. [PMID: 38883865 PMCID: PMC11176794 DOI: 10.1016/j.mec.2024.e00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
Neutrophils are innate immune cells and the first line of defense for the maintenance of homeostasis. However, our knowledge of the metabolic rewiring associated with their differentiation and immune stimulation is limited. Here, quantitative 13C-metabolic flux analysis was performed using HL-60 cells as the neutrophil model. A metabolic model for 13C-metabolic flux analysis of neutrophils was developed based on the accumulation of 13C in intracellular metabolites derived from 13C-labeled extracellular carbon sources and intracellular macromolecules. Aspartate and glutamate in the medium were identified as carbon sources that enter central carbon metabolism. Furthermore, the breakdown of macromolecules, estimated to be fatty acids and nucleic acids, was observed. Based on these results, a modified metabolic model was used for 13C-metabolic flux analysis of undifferentiated, differentiated, and lipopolysaccharide (LPS)-activated HL-60 cells. The glucose uptake rate and glycolytic flux decreased with differentiation, whereas the tricarboxylic acid (TCA) cycle flux remained constant. The addition of LPS to differentiated HL-60 cells activated the glucose uptake rate and pentose phosphate pathway (PPP) flux levels, resulting in an increased rate of total NADPH regeneration, which could be used to generate reactive oxygen species. The flux levels of fatty acid degradation and synthesis were also increased in LPS-activated HL-60 cells. Overall, this study highlights the quantitative metabolic alterations in multiple pathways via the differentiation and activation of HL-60 cells using 13C-metabolic flux analysis.
Collapse
Affiliation(s)
- Takeo Taniguchi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Greenlaw AC, Alavattam KG, Tsukiyama T. Post-transcriptional regulation shapes the transcriptome of quiescent budding yeast. Nucleic Acids Res 2024; 52:1043-1063. [PMID: 38048329 PMCID: PMC10853787 DOI: 10.1093/nar/gkad1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
To facilitate long-term survival, cells must exit the cell cycle and enter quiescence, a reversible non-replicative state. Budding yeast cells reprogram their gene expression during quiescence entry to silence transcription, but how the nascent transcriptome changes in quiescence is unknown. By investigating the nascent transcriptome, we identified over a thousand noncoding RNAs in quiescent and G1 yeast cells, and found noncoding transcription represented a larger portion of the quiescent transcriptome than in G1. Additionally, both mRNA and ncRNA are subject to increased post-transcriptional regulation in quiescence compared to G1. We found that, in quiescence, the nuclear exosome-NNS pathway suppresses over one thousand mRNAs, in addition to canonical noncoding RNAs. RNA sequencing through quiescent entry revealed two distinct time points at which the nuclear exosome controls the abundance of mRNAs involved in protein production, cellular organization, and metabolism, thereby facilitating efficient quiescence entry. Our work identified a previously unknown key biological role for the nuclear exosome-NNS pathway in mRNA regulation and uncovered a novel layer of gene-expression control in quiescence.
Collapse
Affiliation(s)
- Alison C Greenlaw
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA 98195, USA
| | - Kris G Alavattam
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Blood leukocyte transcriptional modules and differentially expressed genes associated with disease severity and age in COVID-19 patients. Sci Rep 2023; 13:898. [PMID: 36650374 PMCID: PMC9844197 DOI: 10.1038/s41598-023-28227-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Since the molecular mechanisms determining COVID-19 severity are not yet well understood, there is a demand for biomarkers derived from comparative transcriptome analyses of mild and severe cases, combined with patients' clinico-demographic and laboratory data. Here the transcriptomic response of human leukocytes to SARS-CoV-2 infection was investigated by focusing on the differences between mild and severe cases and between age subgroups (younger and older adults). Three transcriptional modules correlated with these traits were functionally characterized, as well as 23 differentially expressed genes (DEGs) associated to disease severity. One module, correlated with severe cases and older patients, had an overrepresentation of genes involved in innate immune response and in neutrophil activation, whereas two other modules, correlated with disease severity and younger patients, harbored genes involved in the innate immune response to viral infections, and in the regulation of this response. This transcriptomic mechanism could be related to the better outcome observed in younger COVID-19 patients. The DEGs, all hyper-expressed in the group of severe cases, were mostly involved in neutrophil activation and in the p53 pathway, therefore related to inflammation and lymphopenia. These biomarkers may be useful for getting a better stratification of risk factors in COVID-19.
Collapse
|
6
|
Forbes Beadle L, Love JC, Shapovalova Y, Artemev A, Rattray M, Ashe HL. Combined modelling of mRNA decay dynamics and single-molecule imaging in the Drosophila embryo uncovers a role for P-bodies in 5' to 3' degradation. PLoS Biol 2023; 21:e3001956. [PMID: 36649329 PMCID: PMC9882958 DOI: 10.1371/journal.pbio.3001956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/27/2023] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
Regulation of mRNA degradation is critical for a diverse array of cellular processes and developmental cell fate decisions. Many methods for determining mRNA half-lives rely on transcriptional inhibition or metabolic labelling. Here, we use a non-invasive method for estimating half-lives for hundreds of mRNAs in the early Drosophila embryo. This approach uses the intronic and exonic reads from a total RNA-seq time series and Gaussian process regression to model the dynamics of premature and mature mRNAs. We show how regulation of mRNA stability is used to establish a range of mature mRNA dynamics during embryogenesis, despite shared transcription profiles. Using single-molecule imaging, we provide evidence that, for the mRNAs tested, there is a correlation between short half-life and mRNA association with P-bodies. Moreover, we detect an enrichment of mRNA 3' ends in P-bodies in the early embryo, consistent with 5' to 3' degradation occurring in P-bodies for at least a subset of mRNAs. We discuss our findings in relation to recently published data suggesting that the primary function of P-bodies in other biological contexts is mRNA storage.
Collapse
Affiliation(s)
- Lauren Forbes Beadle
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jennifer C. Love
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Yuliya Shapovalova
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Artem Artemev
- Department of Computing, Imperial College London, London, United Kingdom
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (MR); (HLA)
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (MR); (HLA)
| |
Collapse
|
7
|
Akiyama T, Yamamoto T. Regulation of Early Lymphocyte Development via mRNA Decay Catalyzed by the CCR4-NOT Complex. Front Immunol 2021; 12:715675. [PMID: 34349771 PMCID: PMC8326961 DOI: 10.3389/fimmu.2021.715675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Development of lymphocytes is precisely regulated by various mechanisms. In addition to transcriptional rates, post-transcriptional regulation of mRNA abundance contributes to differentiation of lymphocytes. mRNA decay is a post-transcriptional mechanism controlling mRNA abundance. The carbon catabolite repression 4 (CCR4)-negative on TATA-less (NOT) complex controls mRNA longevity by catalyzing mRNA deadenylation, which is the rate-limiting step in the mRNA decay pathway. mRNA decay, regulated by the CCR4-NOT complex, is required for differentiation of pro-B to pre-B cells and V(D)J recombination in pro-B cells. In this process, it is likely that the RNA-binding proteins, ZFP36 ring finger protein like 1 and 2, recruit the CCR4-NOT complex to specific target mRNAs, thereby inducing cell quiescence of pro-B cells. A recent study showed that the CCR4-NOT complex participates in positive selection of thymocytes. Mechanistically, the CCR4-NOT deadenylase complex inhibits abnormal apoptosis by reducing the expression level of mRNAs encoding pro-apoptotic proteins, which are otherwise up-regulated during positive selection. We discuss mechanisms regulating CCR4-NOT complex-dependent mRNA decay in lymphocyte development and selection.
Collapse
Affiliation(s)
- Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|