1
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2025; 30:1089-1101. [PMID: 39333385 PMCID: PMC11835756 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Pan N, Qin K, Patino LR, Tallman MJ, Lei D, Lu L, Li W, Blom TJ, Bruns KM, Welge JA, Strawn JR, Gong Q, Sweeney JA, Singh MK, DelBello MP. Aberrant brain network topology in youth with a familial risk for bipolar disorder: a task-based fMRI connectome study. J Child Psychol Psychiatry 2024; 65:1072-1086. [PMID: 38220469 PMCID: PMC11246494 DOI: 10.1111/jcpp.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Youth with a family history of bipolar disorder (BD) may be at increased risk for mood disorders and for developing side effects after antidepressant exposure. The neurobiological basis of these risks remains poorly understood. We aimed to identify biomarkers underlying risk by characterizing abnormalities in the brain connectome of symptomatic youth at familial risk for BD. METHODS Depressed and/or anxious youth (n = 119, age = 14.9 ± 1.6 years) with a family history of BD but no prior antidepressant exposure and typically developing controls (n = 57, age = 14.8 ± 1.7 years) received functional magnetic resonance imaging (fMRI) during an emotional continuous performance task. A generalized psychophysiological interaction (gPPI) analysis was performed to compare their brain connectome patterns, followed by machine learning of topological metrics. RESULTS High-risk youth showed weaker connectivity patterns that were mainly located in the default mode network (DMN) (network weight = 50.1%) relative to controls, and connectivity patterns derived from the visual network (VN) constituted the largest proportion of aberrant stronger pairs (network weight = 54.9%). Global local efficiency (Elocal, p = .022) and clustering coefficient (Cp, p = .029) and nodal metrics of the right superior frontal gyrus (SFG) (Elocal: p < .001; Cp: p = .001) in the high-risk group were significantly higher than those in healthy subjects, and similar patterns were also found in the left insula (degree: p = .004; betweenness: p = .005; age-by-group interaction, p = .038) and right hippocampus (degree: p = .003; betweenness: p = .003). The case-control classifier achieved a cross-validation accuracy of 78.4%. CONCLUSIONS Our findings of abnormal connectome organization in the DMN and VN may advance mechanistic understanding of risk for BD. Neuroimaging biomarkers of increased network segregation in the SFG and altered topological centrality in the insula and hippocampus in broader limbic systems may be used to target interventions tailored to mitigate the underlying risk of brain abnormalities in these at-risk youth.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kun Qin
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Luis R. Patino
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Maxwell J. Tallman
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas J. Blom
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kaitlyn M. Bruns
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffrey A. Welge
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Manpreet K. Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, California, USA
| | | |
Collapse
|
3
|
Zhu Z, Lei D, Qin K, Tallman MJ, Patino LR, Fleck DE, Gong Q, Sweeney JA, DelBello MP, McNamara RK. Cortical and subcortical structural differences in psychostimulant-free ADHD youth with and without a family history of bipolar I disorder: a cross-sectional morphometric comparison. Transl Psychiatry 2023; 13:368. [PMID: 38036505 PMCID: PMC10689449 DOI: 10.1038/s41398-023-02667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Although attention-deficit/hyperactivity disorder (ADHD) and a family history of bipolar I disorder (BD) are associated with increased risk for developing BD, their neuroanatomical substrates remain poorly understood. This study compared cortical and subcortical gray matter morphology in psychostimulant-free ADHD youth with and without a first-degree relative with BD and typically developing healthy controls. ADHD youth (ages 10-18 years) with ('high-risk', HR) or without ('low-risk', LR) a first-degree relative with BD and healthy comparison youth (HC) were enrolled. High-resolution 3D T1-weighted images were acquired using a Philips 3.0 T MR scanner. The FreeSurfer image analysis suite was used to measure cortical thickness, surface area, and subcortical volumes. A general linear model evaluated group differences in MRI features with age and sex as covariates, and exploratory correlational analyses evaluated associations with symptom ratings. A total of n = 142 youth (mean age: 14.16 ± 2.54 years, 35.9% female) were included in the analysis (HC, n = 48; LR, n = 49; HR, n = 45). The HR group exhibited a more severe symptom profile, including higher mania and dysregulation scores, compared to the LR group. For subcortical volumes, the HR group exhibited smaller bilateral thalamic, hippocampal, and left caudate nucleus volumes compared to both LR and HC, and smaller right caudate nucleus compared with LR. No differences were found between LR and HC groups. For cortical surface area, the HR group exhibited lower parietal and temporal surface area compared with HC and LR, and lower orbitofrontal and superior frontal surface area compared to LR. The HR group exhibited lower left anterior cingulate surface area compared with HC. LR participants exhibited greater right pars opercularis surface area compared with the HC. Some cortical alterations correlated with symptom severity ratings. These findings suggest that ADHD in youth with a BD family history is associated with a more a severe symptom profile and a neuroanatomical phenotype that distinguishes it from ADHD without a BD family history.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, PR China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442012, PR China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, Fujian, PR China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| |
Collapse
|
4
|
Miklowitz DJ, Weintraub MJ, Walshaw PD, Schneck CD, Chang KD, Merranko J, Garrett AS, Singh MK. Early Family Intervention for Youth at Risk for Bipolar Disorder: Psychosocial and Neural Mediators of Outcome. Curr Neuropharmacol 2023; 21:1379-1392. [PMID: 36635932 PMCID: PMC10324335 DOI: 10.2174/1570159x21666230111120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 11/25/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The impairing neurodevelopmental course of bipolar disorder (BD) suggests the importance of early intervention for youth in the beginning phases of the illness. OBJECTIVE We report the results of a 3-site randomized trial of family-focused therapy for youth at high-risk (FFT-HR) for BD, and explore psychosocial and neuroimaging variables as mediators of treatment effects. METHODS High-risk youth (<18 years) with major depressive disorder or other specified BD, active mood symptoms, and a family history of BD were randomly assigned to 4 months of FFT-HR (psychoeducation, communication and problem-solving skills training) or 4 months of enhanced care psychoeducation. Adjunctive pharmacotherapy was provided by study psychiatrists. Neuroimaging scans were conducted before and after psychosocial treatments in eligible participants. Independent evaluators interviewed participants every 4-6 months over 1-4 years regarding symptomatic outcomes. RESULTS Among 127 youth (mean 13.2 ± 2.6 years) over a median of 98 weeks, FFT-HR was associated with longer intervals prior to new mood episodes and lower levels of suicidal ideation than enhanced care. Reductions in perceived family conflict mediated the effects of psychosocial interventions on the course of mood symptoms. Among 34 participants with pre-/post-treatment fMRI scans, youth in FFT-HR had (a) stronger resting state connectivity between ventrolateral PFC and anterior default mode network, and (b) increased activity of dorsolateral and medial PFC in emotion processing and problem-solving tasks, compared to youth in enhanced care. CONCLUSION FFT-HR may delay new mood episodes in symptomatic youth with familial liability to BD. Putative treatment mechanisms include neural adaptations suggestive of improved emotion regulation.
Collapse
Affiliation(s)
- David J. Miklowitz
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marc J. Weintraub
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patricia D. Walshaw
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Kiki D. Chang
- Private Practice, 2460 Park Blvd, Suite 6 Palo Alto, CA 94306 USA
| | - John Merranko
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Amy S. Garrett
- Department of Psychiatry, University of Texas, Health Science Center at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
5
|
Qin K, Sweeney JA, DelBello MP. The inferior frontal gyrus and familial risk for bipolar disorder. PSYCHORADIOLOGY 2022; 2:171-179. [PMID: 38665274 PMCID: PMC10917220 DOI: 10.1093/psyrad/kkac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 04/28/2024]
Abstract
Bipolar disorder (BD) is a familial disorder with high heritability. Genetic factors have been linked to the pathogenesis of BD. Relatives of probands with BD who are at familial risk can exhibit brain abnormalities prior to illness onset. Given its involvement in prefrontal cognitive control and in frontolimbic circuitry that regulates emotional reactivity, the inferior frontal gyrus (IFG) has been a focus of research in studies of BD-related pathology and BD-risk mechanism. In this review, we discuss multimodal neuroimaging findings of the IFG based on studies comparing at-risk relatives and low-risk controls. Review of these studies in at-risk cases suggests the presence of both risk and resilience markers related to the IFG. At-risk individuals exhibited larger gray matter volume and increased functional activities in IFG compared with low-risk controls, which might result from an adaptive brain compensation to support emotion regulation as an aspect of psychological resilience. Functional connectivity between IFG and downstream limbic or striatal areas was typically decreased in at-risk individuals relative to controls, which could contribute to risk-related problems of cognitive and emotional control. Large-scale and longitudinal investigations on at-risk individuals will further elucidate the role of IFG and other brain regions in relation to familial risk for BD, and together guide identification of at-risk individuals for primary prevention.
Collapse
Affiliation(s)
- Kun Qin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| |
Collapse
|
6
|
Singh MK, Nimarko A, Bruno J, Anand KJS, Singh SP. Can Translational Social Neuroscience Research Offer Insights to Mitigate Structural Racism in the United States? BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1258-1267. [PMID: 35609781 PMCID: PMC11611498 DOI: 10.1016/j.bpsc.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
Abstract
Social isolation and conflict due to structural racism may result in human suffering and loneliness across the life span. Given the rising prevalence of these problems in the United States, combined with disruptions experienced during the COVID-19 pandemic, the neurobiology of affiliative behaviors may offer practical solutions to the pressing challenges associated with structural racism. Controlled experiments across species demonstrate that social connections are critical to survival, although strengthening individual resilience is insufficient to address the magnitude and impact of structural racism. In contrast, the multilevel construct of social resilience, defined by the power of groups to cultivate, engage in, and sustain positive relationships that endure and recuperate from social adversities, offers unique insights that may have greater impact, reach, and durability than individual-level interventions. Here, we review putative social resilience-enhancing interventions and, when available, their biological mediators, with the hope to stimulate discovery of novel approaches to mitigate structural racism. We first explore the social neuroscience principles underlying psychotherapy and other psychiatric interventions. Then, we explore translational efforts across species to tailor treatments that increase social resilience, with context and cultural sensitivity in mind. Finally, we conclude with some practical future directions for understudied areas that may be essential for progress in biological psychiatry, including ethical ways to increase representation in research and developing social paradigms that inform dynamics toward or away from socially resilient outcomes.
Collapse
Affiliation(s)
- Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| | - Akua Nimarko
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Jennifer Bruno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Kanwaljeet J S Anand
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Swaran P Singh
- Centre of Mental Health and Wellbeing Research, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
7
|
Fischer AS, Holt-Gosselin B, Hagan KE, Fleming SL, Nimarko AF, Gotlib IH, Singh MK. Intrinsic Connectivity and Family Dynamics: Striatolimbic Markers of Risk and Resilience in Youth at Familial Risk for Mood Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:855-866. [PMID: 35272095 PMCID: PMC9452604 DOI: 10.1016/j.bpsc.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Few studies to date have characterized functional connectivity (FC) within emotion and reward networks in relation to family dynamics in youth at high familial risk for bipolar disorder (HR-BD) and major depressive disorder (HR-MDD) relative to low-risk youth (LR). Such characterization may advance our understanding of the neural underpinnings of mood disorders and lead to more effective interventions. METHODS A total of 139 youth (43 HR-BD, 46 HR-MDD, and 50 LR) aged 12.9 ± 2.7 years were longitudinally followed for 4.5 ± 2.4 years. We characterized differences in striatolimbic FC that distinguished between HR-BD, HR-MDD, and LR and between resilience and conversion to psychopathology. We then examined whether risk status moderated FC-family dynamic associations. Finally, we examined whether baseline between-group FC differences predicted resilence versus conversion to psychopathology. RESULTS HR-BD had greater amygdala-middle frontal gyrus and dorsal striatum-middle frontal gyrus FC relative to HR-MDD and LR, and HR-MDD had lower amygdala-fusiform gyrus and dorsal striatum-precentral gyrus FC relative to HR-BD and LR (voxel-level p < .001, cluster-level false discovery rate-corrected p < .05). Resilient youth had greater amygdala-orbitofrontal cortex and ventral striatum-dorsal anterior cingulate cortex FC relative to youth with conversion to psychopathology (voxel-level p < .001, cluster-level false discovery rate-corrected p < .05). Greater family rigidity was inversely associated with amygdala-fusiform gyrus FC across all groups (false discovery rate-corrected p = .017), with a moderating effect of bipolar risk status (HR-BD vs. HR-MDD p < .001; HR-BD vs. LR p = .005). Baseline FC differences did not predict resilence versus conversion to psychopathology. CONCLUSIONS Findings represent neural signatures of risk and resilience in emotion and reward processing networks in youth at familial risk for mood disorders that may be targets for novel interventions tailored to the family context.
Collapse
Affiliation(s)
- Adina S Fischer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| | | | - Kelsey E Hagan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Scott L Fleming
- Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Akua F Nimarko
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, California
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| |
Collapse
|
8
|
Kutlucinar KI, Hoyt SM, Willie DA. Patients' opinions on the validity of the diagnosis of pediatric bipolar disorder. Bipolar Disord 2022; 24:320-321. [PMID: 35167173 DOI: 10.1111/bdi.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Katrin I Kutlucinar
- Research and Conversations About Bipolar Disorder Inc, Kensington, Maryland, USA
| | - Shawnna M Hoyt
- Research and Conversations About Bipolar Disorder Inc, Kensington, Maryland, USA
| | - Daniel A Willie
- Research and Conversations About Bipolar Disorder Inc, Kensington, Maryland, USA
| |
Collapse
|
9
|
Novins DK, Althoff RR, Cortese S, Drury SS, Frazier JA, Henderson SW, McCauley E, Njoroge WFM, White T. Editors' Best of 2021. J Am Acad Child Adolesc Psychiatry 2022; 61:4-9. [PMID: 34949338 DOI: 10.1016/j.jaac.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
There is, in the content of the Journal, an embarrassment of riches, and picking a "best" seems to demand a certain qualification: is the "best" the most interesting, most surprising, most educational, most important, most provocative, most enjoyable? How to choose? We are hardly unbiased and can admit to a special affection for the ones that we and the authors worked hardest on, hammering version after version into shape. Acknowledging these biases, here are the 2021 articles that we think deserve your attention or at least a second read.
Collapse
|
10
|
Li W, Lei D, Tallman MJ, Patino LR, Gong Q, Strawn JR, DelBello MP, McNamara RK. Emotion-Related Network Reorganization Following Fish Oil Supplementation in Depressed Bipolar Offspring: An fMRI Graph-Based Connectome Analysis. J Affect Disord 2021; 292:319-327. [PMID: 34139404 PMCID: PMC8282765 DOI: 10.1016/j.jad.2021.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Mood disorders are associated with fronto-limbic structural and functional abnormalities and deficits in omega-3 polyunsaturated fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Emerging evidence also suggests that n-3 PUFA, which are enriched in fish oil, promote cortical plasticity and connectivity. The present study performed a graph-based connectome analysis to investigate the role of n-3 PUFA in emotion-related network organization in medication-free depressed adolescent bipolar offspring. METHODS At baseline patients (n = 53) were compared with healthy controls (n = 53), and patients were then randomized to 12-week double-blind treatment with placebo or fish oil. At baseline and endpoint, erythrocyte EPA+DHA levels were measured and fMRI scans (4 Tesla) were obtained while performing a continuous performance task with emotional and neutral distractors (CPT-END). Graph-based analysis was used to characterize topological properties of large-scale brain network organization. RESULTS Compared with healthy controls, patients exhibited lower erythrocyte EPA+DHA levels (p = 0.0001), lower network clustering coefficients (p = 0.029), global efficiency (p = 0.042), and lower node centrality and connectivity strengths in frontal-limbic regions (p<0.05). Compared with placebo, 12-week fish oil supplementation increased erythrocyte EPA+DHA levels (p<0.001), network clustering coefficient (p = 0.005), global (p = 0.047) and local (p = 0.023) efficiency, and node centralities mainly in temporal regions (p<0.05). LIMITATIONS The duration of fish oil supplementation was relatively short and the sample size was relatively small. CONCLUSIONS These findings provide preliminary evidence that abnormalities in emotion-related network organization observed in depressed high-risk youth may be amenable to modification through fish oil supplementation.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267,Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Maxwell J. Tallman
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - L. Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Qiyong Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Robert K. McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
11
|
Singh MK, Hu R, Miklowitz DJ. Preventing Irritability and Temper Outbursts in Youth by Building Resilience. Child Adolesc Psychiatr Clin N Am 2021; 30:595-610. [PMID: 34053688 PMCID: PMC8184316 DOI: 10.1016/j.chc.2021.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Severe irritability and temper outbursts are risk factors for the onset of serious and lifelong mood disorders. In treating children and adolescents with severe irritability, clinicians should evaluate and address safety issues before acute stabilization of symptoms. Then, clinicians can initiate interventions to prevent the onset or relapses of the undesired behavior and its functional consequences. This review summarizes primary, secondary, and tertiary relapse prevention strategies, with an emphasis on strategies that build resilience in youth that mitigate the onset, recurrence, and progression of emotion dysregulation.
Collapse
Affiliation(s)
- Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305-5719, USA.
| | - Rebecca Hu
- University of California, San Francisco School of Medicine, 401 Parnassus Avenue, San Francisco, CA 94143, USA
| | - David J Miklowitz
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute, David Geffen School of Medicine at UCLA, 760 Westwood Plaza Rm A8-256, Los Angeles, CA 90024-1759, USA
| |
Collapse
|
12
|
Tymofiyeva O, Gaschler R. Training-Induced Neural Plasticity in Youth: A Systematic Review of Structural and Functional MRI Studies. Front Hum Neurosci 2021; 14:497245. [PMID: 33536885 PMCID: PMC7848153 DOI: 10.3389/fnhum.2020.497245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023] Open
Abstract
Experience-dependent neural plasticity is high in the developing brain, presenting a unique window of opportunity for training. To optimize existing training programs and develop new interventions, it is important to understand what processes take place in the developing brain during training. Here, we systematically review MRI-based evidence of training-induced neural plasticity in children and adolescents. A total of 71 articles were included in the review. Significant changes in brain activation, structure, microstructure, and structural and functional connectivity were reported with different types of trainings in the majority (87%) of the studies. Significant correlation of performance improvement with neural changes was reported in 51% of the studies. Yet, only 48% of the studies had a control condition. Overall, the review supports the hypothesized neural changes with training while at the same time charting empirical and methodological desiderata for future research.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, United States
- Department of Psychology, University of Hagen, Hagen, Germany
| | - Robert Gaschler
- Department of Psychology, University of Hagen, Hagen, Germany
| |
Collapse
|