1
|
Singh GK, Das P, Sharma P, Srivastava S, Singh V, Singh K, Barui S, Mulajkar D, Dubey IP. Mycosis fungoides and Sézary syndrome - Simplifying the approach for dermatologists. Part 1: Etiopathogenesis, clinical features and evaluation. Indian J Dermatol Venereol Leprol 2025; 91:40-48. [PMID: 39772314 DOI: 10.25259/ijdvl_737_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2024] [Indexed: 01/12/2025]
Abstract
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of extranodal non-Hodgkin's lymphomas characterised by a cutaneous infiltration of malignant monoclonal T lymphocytes. While this broad spectrum of disease with its varied etiopathogenesis, clinical features and management options are well characterised, an approach from a dermatologist's perspective is lacking in the literature. We strive to elucidate the approach from a clinician's point of view, especially in respect of clinical examination, investigations, staging and management options that are available in the realm of the dermatologists. This review article is the first part out of the two, covering the etiopathogenesis, clinical features and evaluation.
Collapse
Affiliation(s)
- Gautam Kumar Singh
- Department of Dermatology, Bharati Vidyapeeth Medical College, Pune, India
| | - Pankaj Das
- Department of Dermatology, Armed Forces Medical College, Pune, India
| | - Pragya Sharma
- Department of Pathology, Armed Forces Medical College, Pune, India
| | - Shailendra Srivastava
- Department of Dermatology, Base Hospital Delhi Cantonment and Army College of Medical Sciences, New Delhi, India
| | - Vikram Singh
- Department of Pathology, Armed Forces Medical College, Pune, India
| | - Kanwaljeet Singh
- Department of Pathology, Army Hospital, Research and Referral, New Delhi, India
| | - Sanghita Barui
- Department of Pathology, Base Hospital, Delhi Cantonment and Army College of Medical Sciences, New Delhi, India
| | - Deepak Mulajkar
- Department of Oncomedicine, Army Hospital, Research and Referral, New Delhi, India
| | - Indra Prakash Dubey
- Department of Nuclear Medicine, Army Hospital Research and Referral, New Delhi, India
| |
Collapse
|
2
|
Licht P, Mailänder V. Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides. Cancers (Basel) 2024; 16:3947. [PMID: 39682136 DOI: 10.3390/cancers16233947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Mycosis fungoides (MF) represents the most prevalent entity of cutaneous T cell lymphoma (CTCL). The MF aetiopathogenesis is incompletely understood, due to significant transcriptomic heterogeneity and conflicting views on whether oncologic transformation originates in early thymocytes or mature effector memory T cells. Recently, using clinical specimens, our group showed that the skin microbiome aggravates disease course, mainly driven by an outgrowing, pathogenic S. aureus strain carrying the virulence factor spa, which was shown by others to activate the T cell signalling pathway NF-κB. METHODS To explore the role of the skin microbiome in MF aetiopathogenesis, we here performed RNA sequencing, multi-omic data integration of the skin microbiome and skin transcriptome using Multi-Omic Factor Analysis (MOFA), virome profiling, and T cell receptor (TCR) sequencing in 10 MF patients from our previous study group. RESULTS We observed that inter-patient transcriptional heterogeneity may be largely attributed to differential activation of T cell signalling pathways. Notably, the MOFA model resolved the heterogenous activation pattern of T cell signalling after denoising the transcriptome from microbial influence. The MOFA model suggested that the outgrowing S. aureus strain evoked signalling by non-canonical NF-κB and IL-1B, which in turn may have fuelled the aggravated disease course. Further, the MOFA model indicated aberrant pathways of early thymopoiesis alongside enrichment of antiviral innate immunity. In line with this, viral prevalence, particularly of Epstein-Barr virus (EBV), trended higher in both lesional skin and the blood compared to nonlesional skin. Additionally, TCRs in both MF skin lesions and the blood were significantly more likely to recognize EBV peptides involved in latent infection. CONCLUSIONS First, our findings suggest that S. aureus with its virulence factor spa fuels MF progression through non-canonical NF-κB and IL-1B signalling. Second, our data provide insights into the potential role of viruses in MF aetiology. Last, we propose a model of microbiome-driven MF aetiopathogenesis: Thymocytes undergo initial oncologic transformation, potentially caused by viruses. After maturation and skin infiltration, an outgrowing, pathogenic S. aureus strain evokes activation and maturation into effector memory T cells, resulting in aggressive disease. Further studies are warranted to verify and extend our data, which are based on computational analyses.
Collapse
Affiliation(s)
- Philipp Licht
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
3
|
Gordon ER, Fahmy LM, Trager MH, Adeuyan O, Lapolla BA, Schreidah CM, Geskin LJ. From Molecules to Microbes: Tracing Cutaneous T-Cell Lymphoma Pathogenesis through Malignant Inflammation. J Invest Dermatol 2024; 144:1954-1962. [PMID: 38703171 DOI: 10.1016/j.jid.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 05/06/2024]
Abstract
The etiology of CTCL is a subject of extensive investigation. Researchers have explored links between CTCL and environmental chemical exposures, such as aromatic hydrocarbons (eg, pesticides and benzene), as well as infectious factors, including various viruses (eg, human T-lymphotropic virus [HTLV]-I and HTLV-II) and bacteria (eg, Staphylococcus aureus). There has been growing emphasis on the role of malignant inflammation in CTCL development. In this review, we synthesize studies of environmental and infectious exposures, along with research on the aryl hydrocarbon receptor and the involvement of pathogens in disease etiology, providing insight into the pathogenesis of CTCL.
Collapse
Affiliation(s)
- Emily R Gordon
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Lauren M Fahmy
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Megan H Trager
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York, USA
| | - Oluwaseyi Adeuyan
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Brigit A Lapolla
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York, USA
| | - Celine M Schreidah
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Larisa J Geskin
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Dermatology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
4
|
Zeng Z, Vadivel CK, Gluud M, Namini MRJ, Yan L, Ahmad S, Hansen MB, Coquet J, Mustelin T, Koralov SB, Bonefeld CM, Woetmann A, Geisler C, Guenova E, Kamstrup MR, Litman T, Gjerdrum LMR, Buus TB, Ødum N. Keratinocytes Present Staphylococcus aureus Enterotoxins and Promote Malignant and Nonmalignant T Cell Proliferation in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024:S0022-202X(24)00377-4. [PMID: 38762064 DOI: 10.1016/j.jid.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
Cutaneous T-cell lymphoma is characterized by malignant T cells proliferating in a unique tumor microenvironment dominated by keratinocytes (KCs). Skin colonization and infection by Staphylococcus aureus are a common cause of morbidity and are suspected of fueling disease activity. In this study, we show that expression of HLA-DRs, high-affinity receptors for staphylococcal enterotoxins (SEs), by KCs correlates with IFN-γ expression in the tumor microenvironment. Importantly, IFN-γ induces HLA-DR, SE binding, and SE presentation by KCs to malignant T cells from patients with Sézary syndrome and malignant and nonmalignant T-cell lines derived from patients with Sézary syndrome and mycosis fungoides. Likewise, preincubation of KCs with supernatant from patient-derived SE-producing S aureus triggers proliferation in malignant T cells and cytokine release (including IL-2), when cultured with nonmalignant T cells. This is inhibited by pretreatment with engineered bacteriophage S aureus-specific endolysins. Furthermore, alteration in the HLA-DR-binding sites of SE type A and small interfering RNA-mediated knockdown of Jak3 and IL-2Rγ block induction of malignant T-cell proliferation. In conclusion, we show that upon exposure to patient-derived S aureus and SE, KCs stimulate IL-2Rγ/Jak3-dependent proliferation of malignant and nonmalignant T cells in an environment with nonmalignant T cells. These findings suggest that KCs in the tumor microenvironment play a key role in S aureus-mediated disease activity in cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Ziao Zeng
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lang Yan
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sana Ahmad
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Blood Bank, Department of Clinical Immunology, State University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Coquet
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Mustelin
- Department of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuella Guenova
- University Hospital Lausanne (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Maria R Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise-Mette R Gjerdrum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Roskilde, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Vadivel CK, Willerslev-Olsen A, Namini MRJ, Zeng Z, Yan L, Danielsen M, Gluud M, Pallesen EMH, Wojewoda K, Osmancevic A, Hedebo S, Chang YT, Lindahl LM, Koralov SB, Geskin LJ, Bates SE, Iversen L, Litman T, Bech R, Wobser M, Guenova E, Kamstrup MR, Ødum N, Buus TB. Staphylococcus aureus induces drug resistance in cancer T cells in Sézary syndrome. Blood 2024; 143:1496-1512. [PMID: 38170178 PMCID: PMC11033614 DOI: 10.1182/blood.2023021671] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
ABSTRACT Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.
Collapse
Affiliation(s)
- Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin R. J. Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ziao Zeng
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lang Yan
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Danielsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Emil M. H. Pallesen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Wojewoda
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amra Osmancevic
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Signe Hedebo
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Yun-Tsan Chang
- Department of Dermatology and Venereology, University Hospital Centre (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Larisa J. Geskin
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY
| | - Susan E. Bates
- Division of Hematology/Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Bech
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Marion Wobser
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Emmanuella Guenova
- Department of Dermatology and Venereology, University Hospital Centre (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Maria R. Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Mohanraj U, Väkevä L, Ranki A, Söderlund-Venermo M. Prevalence, tropism, and activity of cutavirus in circulating blood lymphocytes, stool, and skin biopsy specimens of patients with cutaneous T-cell lymphoma and parapsoriasis en plaques. J Med Virol 2024; 96:e29575. [PMID: 38549497 DOI: 10.1002/jmv.29575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
A significant association has been established between a newly emerging human parvovirus, cutavirus (CuV), and cutaneous T-cell lymphoma/mycosis fungoides (CTCL/MF) and its precursor parapsoriasis en plaques (PP). CTCL is a heterogeneous group of skin malignancies of T cells, the cause of which remains unknown. This study aimed to determine the activity, spread, and cell tropism of the skin-persistent CuV. CuV DNA was detected in both skin biopsies (6/20, 30%) and peripheral blood mononuclear cells (PBMCs) (4/29, 13.8%) from 49 CTCL/MF or PP patients, while none from 33 patients with any other type of skin disease or healthy subjects harbored CuV DNA. CuV DNA persisted in the skin or PBMCs for up to 15 years, despite circulating CuV-specific IgG. Spliced CuV mRNA was expressed in skin, indicating viral activity. Also, both of two available stool samples contained encapsidated CuV genomes, suggesting that the patients excrete infectious virus into the environment. Finally, CuV was observed to target circulating and skin-resident CD4 + T cells and some skin keratinocytes and macrophages. This is especially intriguing as malignant T cells in CTCL develop from CD4 + T cells. Hence, CuV should be further investigated for the overall role it plays in the complex tumor microenvironment of CTCL/MF.
Collapse
Affiliation(s)
| | - Liisa Väkevä
- Department of Dermatology, Allergology, and Venereology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology, and Venereology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
7
|
Gumina ME, Hooper MJ, Zhou XA, Koralov SB. Role of Antigenic Stimulation in Cutaneous T-Cell Lymphomas. J Invest Dermatol 2024; 144:755-763. [PMID: 38149950 PMCID: PMC10960716 DOI: 10.1016/j.jid.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Cutaneous T-cell lymphoma (CTCL) involves a clonal expansion of malignant cells accumulating in the skin, a primary barrier site. CTCL has long been hypothesized to be caused or perpetuated by chronic antigen stimulation due to unknown exposures. These antigenic triggers, defined as any element that may cause activation of malignant T cells through TCR signaling, have been hypothesized to range from chemicals to microbes. This review covers current evidence supporting chemical and microbial stimuli that may act as antigenic triggers of CTCL and summarizes novel areas of investigation, in which the potential antigenicity of the exposure is still unknown.
Collapse
Affiliation(s)
- Megan E Gumina
- Department of Pathology, Grossman School of Medicine, New York University, New York, New York, USA
| | - Madeline J Hooper
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaolong A Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Sergei B Koralov
- Department of Pathology, Grossman School of Medicine, New York University, New York, New York, USA.
| |
Collapse
|
8
|
Ødum AWF, Geisler C. Vitamin D in Cutaneous T-Cell Lymphoma. Cells 2024; 13:503. [PMID: 38534347 PMCID: PMC10969440 DOI: 10.3390/cells13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)-the most common variant of CTCL-often presents with skin lesions around the abdomen and buttocks ("bathing suit" distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL.
Collapse
Affiliation(s)
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Angelova A, Rommelaere J, Ungerechts G. The Complex Role of Infectious Agents in Human Cutaneous T-Cell Lymphoma Pathogenesis: From Candidate Etiological Factors to Potential Therapeutics. Pathogens 2024; 13:184. [PMID: 38535528 PMCID: PMC10975429 DOI: 10.3390/pathogens13030184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/11/2025] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a devastating, potentially fatal T-lymphocyte malignancy affecting the skin. Despite all efforts, the etiology of this disease remains unknown. Infectious agents have long been suspected as factors or co-factors in CTCL pathogenesis. This review deals with the panel of bacterial and viral pathogens that have been investigated so far in an attempt to establish a potential link between infection/carriage and CTCL development. A special focus is given to a recently discovered human protoparvovirus, namely the cutavirus (CutaV), which has emerged as a plausible CTCL etiological agent. Available evidence in support of this hypothesis as well as alternative interpretations and uncertainties raised by some conflicting data are discussed. The complexity and multifacetedness of the Parvoviridae family of viruses are illustrated by presenting another protoparvovirus, the rat H-1 parvovirus (H-1PV). H-1PV belongs to the same genus as the CutaV but carries considerable potential for therapeutic applications in cutaneous lymphoma.
Collapse
Affiliation(s)
- Assia Angelova
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.R.); (G.U.)
| | - Jean Rommelaere
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.R.); (G.U.)
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.R.); (G.U.)
- Department of Medical Oncology, National Center for Tumor Diseases Heidelberg and Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Gordon ER, Adeuyan O, Schreidah CM, Chen C, Trager MH, Lapolla BA, Fahmy LM, Weng C, Geskin LJ. Clusters, crop dusters, and myth busters: a scoping review of environmental exposures and cutaneous T-cell lymphoma. Ital J Dermatol Venerol 2023; 158:467-482. [PMID: 38015484 DOI: 10.23736/s2784-8671.23.07729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Cutaneous T-cell lymphoma (CTCL) is a heterogenous group of non-Hodgkin lymphomas. Similar presentation to benign conditions, significant genetic variation, and lack of definitive biomarkers contributes to diagnostic delay. The etiology of CTCL is unknown, and environmental exposures, such as geographic, occupational, chemicals, sunlight, and insects have been investigated. EVIDENCE ACQUISITION Review of the literature for CTCL and exposures was performed in PubMed and Google Scholar in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Extension for Scoping Reviews. This search yielded 193 total results, which were initially screened with defined inclusion and exclusion criteria. The 45 remaining articles were reviewed and classified by exposure type. EVIDENCE SYNTHESIS The most frequently investigated CTCL exposure type was geographic (13/45 articles, 29%). Chemical exposures were commonly discussed (10/45 articles, 22%), along with occupational (10/45 articles, 22%). Insect exposures (6/45, 13%) and sun exposure (3/45, 7%) were also reviewed, along with articles describing multiple exposure types (3/45, 7%). Article types ranged from cases to systematic reviews and case-control studies. Evidence linking CTCL and these exposures was mixed. Limitations of this investigation include reliance on patient reporting and frequent speculation on disease association versus causality. CONCLUSIONS This investigation synthesizes the current literature on exposures potentially implicated in the pathogenesis of CTCL, while offering guidance on patient history-taking to ensure potential exposures are captured. Awareness of these possible associations may improve understanding of disease pathogenesis and diagnosis. Moreover, these insights may help with public health decision-making and disease mitigation.
Collapse
Affiliation(s)
- Emily R Gordon
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Oluwaseyi Adeuyan
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Celine M Schreidah
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Caroline Chen
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Megan H Trager
- Department of Dermatology, Irving Medical Center, Columbia University, New York, NY, USA
| | - Brigit A Lapolla
- Department of Dermatology, Irving Medical Center, Columbia University, New York, NY, USA
| | - Lauren M Fahmy
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Irving Medical Center, Columbia University, New York, NY, USA
| | - Larisa J Geskin
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA -
- Department of Dermatology, Irving Medical Center, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Pallesen EMH, Gluud M, Vadivel CK, Buus TB, de Rooij B, Zeng Z, Ahmad S, Willerslev-Olsen A, Röhrig C, Kamstrup MR, Bay L, Lindahl L, Krejsgaard T, Geisler C, Bonefeld CM, Iversen L, Woetmann A, Koralov SB, Bjarnsholt T, Frieling J, Schmelcher M, Ødum N. Endolysin Inhibits Skin Colonization by Patient-Derived Staphylococcus Aureus and Malignant T-Cell Activation in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2023; 143:1757-1768.e3. [PMID: 36889662 DOI: 10.1016/j.jid.2023.01.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 03/08/2023]
Abstract
Staphylococcus aureus is suspected to fuel disease activity in cutaneous T-cell lymphomas. In this study, we investigate the effect of a recombinant, antibacterial protein, endolysin (XZ.700), on S. aureus skin colonization and malignant T-cell activation. We show that endolysin strongly inhibits the proliferation of S. aureus isolated from cutaneous T-cell lymphoma skin and significantly decreases S. aureus bacterial cell counts in a dose-dependent manner. Likewise, ex vivo colonization of both healthy and lesional skin by S. aureus is profoundly inhibited by endolysin. Moreover, endolysin inhibits the patient-derived S. aureus induction of IFNγ and the IFNγ-inducible chemokine CXCL10 in healthy skin. Whereas patient-derived S. aureus stimulates activation and proliferation of malignant T cells in vitro through an indirect mechanism involving nonmalignant T cells, endolysin strongly inhibits the effects of S. aureus on activation (reduced CD25 and signal transducer and activator of transcription 5 phosphorylation) and proliferation (reduced Ki-67) of malignant T cells and cell lines in the presence of nonmalignant T cells. Taken together, we provide evidence that endolysin XZ.700 inhibits skin colonization, chemokine expression, and proliferation of pathogenic S. aureus and blocks their potential tumor-promoting effects on malignant T cells.
Collapse
Affiliation(s)
- Emil M H Pallesen
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bob de Rooij
- Micreos Human Health B.V., Bilthoven, the Netherlands
| | - Ziao Zeng
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sana Ahmad
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Maria R Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Lene Bay
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergei B Koralov
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Lawrence L, Wang A, Charville G, Liu CL, Garofalo A, Alizadeh A, Jangam D, Pinsky BA, Sahoo M, Gratzinger D, Khodadoust M, Kim Y, Novoa R, Stehr H. Identification and confirmation via in situ hybridization of Merkel cell polyomavirus in rare cases of posttransplant cutaneous T-cell lymphoma. J Cutan Pathol 2023; 50:835-844. [PMID: 37394808 DOI: 10.1111/cup.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Viral infection is an oncogenic factor in many hematolymphoid malignancies. We sought to determine the diagnostic yield of aligning off-target reads incidentally obtained during targeted hematolymphoid next-generation sequencing to a large database of viral genomes to screen for viral sequences within tumor specimens. METHODS Alignment of off-target reads to viral genomes was performed using magicBLAST. Localization of Merkel cell polyomavirus (MCPyV) RNA was confirmed by RNAScope in situ hybridization. Integration analysis was performed using Virus-Clip. RESULTS Four cases of post-cardiac-transplant folliculotropic mycosis fungoides (fMF) and one case of peripheral T-cell lymphoma (PTCL) were positive in off-target reads for MCPyV DNA. Two of the four cases of posttransplant fMF and the case of PTCL showed localization of MCPyV RNA to malignant lymphocytes, whereas the remaining two cases of posttransplant fMF showed MCPyV RNA in keratinocytes. CONCLUSIONS Our findings raise the question of whether MCPyV may play a role in rare cases of T-lymphoproliferative disorders, particularly in the skin and in the heavily immunosuppressed posttransplant setting.
Collapse
Affiliation(s)
| | - Aihui Wang
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Chih Long Liu
- Stanford University School of Medicine, Stanford, California, USA
| | - Andrea Garofalo
- Stanford University School of Medicine, Stanford, California, USA
| | - Ash Alizadeh
- Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Malaya Sahoo
- Stanford University School of Medicine, Stanford, California, USA
| | - Dita Gratzinger
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Youn Kim
- Stanford University School of Medicine, Stanford, California, USA
| | - Roberto Novoa
- Stanford University School of Medicine, Stanford, California, USA
| | - Henning Stehr
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Fay CJ, Awh KC, LeBoeuf NR, Larocca CA. Harnessing the immune system in the treatment of cutaneous T cell lymphomas. Front Oncol 2023; 12:1071171. [PMID: 36713518 PMCID: PMC9878398 DOI: 10.3389/fonc.2022.1071171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cutaneous T cell lymphomas are a rare subset of non-Hodgkin's lymphomas with predilection for the skin with immunosuppressive effects that drive morbidity and mortality. We are now appreciating that suppression of the immune system is an important step in the progression of disease. It should come as no surprise that therapies historically and currently being used to treat these cancers have immune modulating functions that impact disease outcomes. By understanding the immune effects of our therapies, we may better develop new agents that target the immune system and improve combinatorial treatment strategies to limit morbidity and mortality of these cancers. The immune modulating effect of therapeutic drugs in use and under development for cutaneous T cell lymphomas will be reviewed.
Collapse
|
14
|
Malignant T cells induce skin barrier defects through cytokine-mediated JAK/STAT signaling in cutaneous T-cell lymphoma. Blood 2023; 141:180-193. [PMID: 36122387 DOI: 10.1182/blood.2022016690] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a devastating lymphoid malignancy characterized by the accumulation of malignant T cells in the dermis and epidermis. Skin lesions cause serious symptoms that hamper quality of life and are entry sites for bacterial infection, a major cause of morbidity and mortality in advanced diseases. The mechanism driving the pathological processes that compromise the skin barrier remains unknown. Here, we report increased transepidermal water loss and compromised expression of the skin barrier proteins filaggrin and filaggrin-2 in areas adjacent to TOX-positive T cells in CTCL skin lesions. Malignant T cells secrete mediators (including cytokines such as interleukin 13 [IL-13], IL-22, and oncostatin M) that activate STAT3 signaling and downregulate filaggrin and filaggrin-2 expression in human keratinocytes and reconstructed human epithelium. Consequently, the repression of filaggrins can be counteracted by a cocktail of antibodies targeting these cytokines/receptors, small interfering RNA-mediated knockdown of JAK1/STAT3, and JAK1 inhibitors. Notably, we show that treatment with a clinically approved JAK inhibitor, tofacitinib, increases filaggrin expression in lesional skin from patients with mycosis fungoides. Taken together, these findings indicate that malignant T cells secrete cytokines that induce skin barrier defects via a JAK1/STAT3-dependent mechanism. As clinical grade JAK inhibitors largely abrogate the negative effect of malignant T cells on skin barrier proteins, our findings suggest that such inhibitors provide novel treatment options for patients with CTCL with advanced disease and a compromised skin barrier.
Collapse
|
15
|
Dimitraki MG, Sourvinos G. Merkel Cell Polyomavirus (MCPyV) and Cancers: Emergency Bell or False Alarm? Cancers (Basel) 2022; 14:cancers14225548. [PMID: 36428641 PMCID: PMC9688650 DOI: 10.3390/cancers14225548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), the sole member of Polyomavirus associated with oncogenesis in humans, is the major causative factor of Merkel cell carcinoma (MCC), a rare, neuroendocrine neoplasia of the skin. Many aspects of MCPyV biology and oncogenic mechanisms remain poorly understood. However, it has been established that oncogenic transformation is the outcome of the integration of the viral genome into the host DNA. The high prevalence of MCPyV in the population, along with the detection of the virus in various human tissue samples and the strong association of MCPyV with the emergence of MCC, have prompted researchers to further investigate the role of MCPyV in malignancies other than MCC. MCPyV DNA has been detected in several different non-MCC tumour tissues but with significantly lower prevalence, viral load and protein expression. Moreover, the two hallmarks of MCPyV MCC have rarely been investigated and the studies have produced generally inconsistent results. Therefore, the outcomes of the studies are inadequate and unable to clearly demonstrate a direct correlation between cellular transformation and MCPyV. This review aims to present a comprehensive recapitulation of the available literature regarding the association of MCPyV with oncogenesis (MCC and non-MCC tumours).
Collapse
|
16
|
The Skin Microbiome in Cutaneous T-Cell Lymphomas (CTCL)—A Narrative Review. Pathogens 2022; 11:pathogens11080935. [PMID: 36015055 PMCID: PMC9414712 DOI: 10.3390/pathogens11080935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, numerous studies have shown a significant role of the skin microbiome in the development and exacerbation of skin diseases. Cutaneous T-cell lymphomas (CTCL) are a group of malignancies primary involving skin, with unclear pathogenesis and etiology. As external triggers appear to contribute to chronic skin inflammation and the malignant transformation of T-cells, some microorganisms or dysbiosis may be involved in these processes. Recently, studies analyzing the skin microbiome composition and diversity have been willingly conducted in CTCL patients. In this review, we summarize currently available data on the skin microbiome in CTLC. We refer to a healthy skin microbiome and the contribution of microorganisms in the pathogenesis and progression of other skin diseases, focusing on atopic dermatitis and its similarities to CTCL. Moreover, we present information about the possible role of identified microorganisms in CTCL development and progression. Additionally, we summarize information about the involvement of Staphylococcus aureus in CTCL pathogenesis. This article also presents therapeutic options used in CTCL and discusses how they may influence the microbiome.
Collapse
|
17
|
King ALO, Lee V, Mirza FN, Jairam V, Yang DX, Yu JB, Park HS, Girardi M, Wilson LD, An Y. Factors Associated With In-Hospital Mortality in Mycosis Fungoides Patients: A Multivariable Analysis. Cureus 2022; 14:e28043. [PMID: 36120198 PMCID: PMC9474264 DOI: 10.7759/cureus.28043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). Although it often has an indolent course, it can progress to more aggressive CTCL forms. There is sparse data in current literature describing specific clinical factors associated with in-hospital mortality in mycosis fungoides patients. An understanding of patients at greatest risk for in-hospital mortality can aid in developing recommendations for prophylaxis and empirical management. Aim We aim to characterize factors associated with in-hospital mortality in MF patients. Materials and methods The Nationwide Emergency Department Sample (NEDS) was queried for MF cases from 2006 to 2015. Baseline demographic and hospital characteristics were stratified based on survival outcomes. Multivariable logistic regression was used to identify factors associated with in-hospital mortality. Results A total of 57,665 patients with MF presenting to the ED between 2006 and 2015 were identified. Sézary syndrome, sepsis, and advanced age were associated with MF in-hospital mortality, while female sex was inversely associated. There was a downtrend in in-hospital mortality among MF patients presenting to the ED from 2006 to 2015. Conclusions Our study highlights factors crucial for risk-stratification for hospitalized MF patients.
Collapse
Affiliation(s)
| | - Victor Lee
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, USA
| | - Fatima N Mirza
- Department of Dermatology, Brown University, Providence, USA
| | - Vikram Jairam
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, USA
| | - Daniel X Yang
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, USA
| | - James B Yu
- Department of Therapeutic Radiology, Columbia University, New York City, USA
| | - Henry S Park
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, USA
| | - Lynn D Wilson
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, USA
| | - Yi An
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, USA
| |
Collapse
|
18
|
Licht P, Mailänder V. Transcriptional Heterogeneity and the Microbiome of Cutaneous T-Cell Lymphoma. Cells 2022; 11:cells11030328. [PMID: 35159138 PMCID: PMC8834405 DOI: 10.3390/cells11030328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous T-Cell Lymphomas (CTCL) presents with substantial clinical variability and transcriptional heterogeneity. In the recent years, several studies paved the way to elucidate aetiology and pathogenesis of CTCL using sequencing methods. Several T-cell subtypes were suggested as the source of disease thereby explaining clinical and transcriptional heterogeneity of CTCL entities. Several differentially expressed pathways could explain disease progression. However, exogenous triggers in the skin microenvironment also seem to affect CTCL status. Especially Staphylococcus aureus was shown to contribute to disease progression. Only little is known about the complex microbiome patterns involved in CTCL and how microbial shifts might impact this malignancy. Nevertheless, first hints indicate that the microbiome might at least in part explain transcriptional heterogeneity and that microbial approaches could serve in diagnosis and prognosis. Shaping the microbiome could be a treatment option to maintain stable disease. Here, we review current knowledge of transcriptional heterogeneity of and microbial influences on CTCL. We discuss potential benefits of microbial applications and microbial directed therapies to aid patients with CTCL burden.
Collapse
Affiliation(s)
- Philipp Licht
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence:
| |
Collapse
|
19
|
Adithya Sateesh B, Bhagat YV, Thomas SE, Sood A, Michael MB. Recurrent Bacterial Infections in Cutaneous T-cell Lymphoma. Cureus 2022; 14:e20912. [PMID: 35154913 PMCID: PMC8815712 DOI: 10.7759/cureus.20912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a dermatologically manifesting immune cell disorder. We present a case of a 76-year-old female with a past medical history of CTCL, presenting with cellulitis of the left foot. After diagnosis of CTCL, the patient was admitted multiple times for treatment of cutaneous and soft-tissue infections with methicillin-resistant Staphylococcus aureus. Her recurrent infection with S. aureus had led to treatment for sepsis and a below-knee amputation on the right during prior hospitalizations. On this admission, the patient was treated with intravenous vancomycin and cefepime as in-patient and oral linezolid as out-patient. Recent articles show that patients with CTCL have an increased tendency to harbor S. aureus, which leads to recurrent infections. Additionally, evidence suggests that S. aureus toxins aid the progression of CTCL by helping the cancer to escape immune regulation. Our patient demonstrates this unique relationship between CTCL and S. aureus, and moreover, we make a case that S. aureus infection in CTCL, as compared to that in other dermatitis, should be better managed to not exacerbate the disease.
Collapse
|
20
|
Wen P, Xie Y, Wang L. The Role of microRNA in Pathogenesis, Diagnosis, Different Variants, Treatment and Prognosis of Mycosis Fungoides. Front Oncol 2021; 11:752817. [PMID: 34966672 PMCID: PMC8710607 DOI: 10.3389/fonc.2021.752817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), accounting for approximately 50% of all CTCLs. Although various molecular changes in MF have been described in existing studies, no obvious disease-specific changes have been found thus far. microRNAs (miRs) are short, noncoding RNA molecules that play roles in the post-transcriptional regulation of oncogenes and tumor suppressor genes in various diseases. Recently, there has been rapidly expanding experimental evidence for the role of miRs in the progression, early diagnosis, prognosis prediction for MF. Efforts to improve early diagnosis and develop personalized therapy options have become more important in recent years. Here, we provide an overview and update of recent advances regarding miRs associated with MF. Furthermore, we provide insights into future opportunities for miR-based therapies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Stonesifer CJ, Grimes JM, Garcia-Saleem TJ, Niedt GW, Kadin ME, Geskin LJ. Stenotrophomonas maltophilia-associated primary cutaneous anaplastic large-cell lymphoma. JAAD Case Rep 2021; 16:77-81. [PMID: 34541271 PMCID: PMC8435984 DOI: 10.1016/j.jdcr.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Connor J Stonesifer
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Joseph M Grimes
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | | | - George W Niedt
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York
| | - Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island.,Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Larisa J Geskin
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
22
|
Henry KA, Wiese D, Maiti A, Harris G, Vucetic S, Stroup AM. Geographic clustering of cutaneous T-cell lymphoma in New Jersey: an exploratory analysis using residential histories. Cancer Causes Control 2021; 32:989-999. [PMID: 34117957 DOI: 10.1007/s10552-021-01452-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Cutaneous T-cell lymphoma (CTCL) is a rare type of non-Hodgkin lymphoma. Previous studies have reported geographic clustering of CTCL based on the residence at the time of diagnosis. We explore geographic clustering of CTCL using both the residence at the time of diagnosis and past residences using data from the New Jersey State Cancer Registry. METHODS CTCL cases (n = 1,163) diagnosed between 2006-2014 were matched to colon cancer controls (n = 17,049) on sex, age, race/ethnicity, and birth year. Jacquez's Q-Statistic was used to identify temporal clustering of cases compared to controls. Geographic clustering was assessed using the Bernoulli-based scan-statistic to compare cases to controls, and the Poisson-based scan-statisic to compare the observed number of cases to the number expected based on the general population. Significant clusters (p < 0.05) were mapped, and standard incidence ratios (SIR) reported. We adjusted for diagnosis year, sex, and age. RESULTS The Q-statistic identified significant temporal clustering of cases based on past residences in the study area from 1992 to 2002. A cluster was detected in 1992 in Bergen County in northern New Jersey based on the Bernoulli (1992 SIR 1.84) and Poisson (1992 SIR 1.86) scan-statistics. Using the Poisson scan-statistic with the diagnosis location, we found evidence of an elevated risk in this same area, but the results were not statistically significant. CONCLUSION There is evidence of geographic clustering of CTCL cases in New Jersey based on past residences. Additional studies are necessary to understand the possible reasons for the excess of CTCL cases living in this specific area some 8-14 years prior to diagnosis.
Collapse
Affiliation(s)
- Kevin A Henry
- Department of Geography and Urban Studies, Temple University, Philadelphia, PA, USA. .,Division of Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Daniel Wiese
- Department of Geography and Urban Studies, Temple University, Philadelphia, PA, USA
| | - Aniruddha Maiti
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Gerald Harris
- Department of Health, New Jersey State Cancer Registry, Trenton, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA.,Department of Biostatitics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Slobodan Vucetic
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Antoinette M Stroup
- Department of Health, New Jersey State Cancer Registry, Trenton, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA.,Department of Biostatitics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
23
|
Comprehensive metagenomic analysis of blastic plasmacytoid dendritic cell neoplasm. Blood Adv 2021; 4:1006-1011. [PMID: 32182365 DOI: 10.1182/bloodadvances.2019001260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a hematologic malignancy believed to originate from plasmacytoid dendritic cells (pDCs), the immune cells responsible for producing type 1 interferons during infection. Nearly all patients with BPDCN have prominent skin involvement, with cutaneous infiltration occupying the dermis and subcutis. One half of patients present with BPDCN cells only in the skin, with no evidence of disease elsewhere. Because normal pDCs are rare or absent in cutaneous sites, and they only traffic to the skin after activation by pathogen or inflammation, our aim was to determine if a microorganism is associated with BPDCN. We performed RNA sequencing in BPDCN skin and bone marrow, with cutaneous T-cell lymphoma (CTCL) and normal skin as controls. GATK-PathSeq was used to identify known microbial sequences. Bacterial reads in BPDCN skin were components of normal flora and did not distinguish BPDCN from controls. We then developed a new computational tool, virID (Viral Identification and Discovery; https://github.com/jnoms/virID), for identification of microbial-associated reads remaining unassigned after GATK-PathSeq. We found no evidence for a known or novel virus in BPDCN skin or bone marrow, despite confirming that virID could identify Merkel cell polyomavirus in Merkel cell carcinoma, human papillomavirus in head and neck squamous cell carcinoma, and Kaposi's sarcoma herpesvirus in Kaposi's sarcoma in a blinded fashion. Thus, at the level of sensitivity used here, we found no clear pathogen linked to BPDCN.
Collapse
|
24
|
Nicolay JP, Albrecht JD, Alberti-Violetti S, Berti E. CCR4 in cutaneous T-cell lymphoma: Therapeutic targeting of a pathogenic driver. Eur J Immunol 2021; 51:1660-1671. [PMID: 33811642 DOI: 10.1002/eji.202049043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/08/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
New treatments are needed for patients with cutaneous T-cell lymphoma (CTCL), particularly for advanced mycosis fungoides (MF) and Sezary syndrome (SS). The immunopathology of MF and SS is complex, but recent advances in tumor microenvironment understanding have identified CCR4 as a promising therapeutic target. CCR4 is widely expressed on malignant T cells and Tregs in the skin and peripheral blood of patients with MF and SS. The interaction of CCR4 with its dominant ligands CCL17 and CCL22 plays a critical role in the development and progression of CTCL, facilitating the movement into, and accumulation of, CCR4-expressing T cells in the skin, and recruiting CCR4-expressing Tregs into the tumor microenvironment. Expression of CCR4 is upregulated at all stages of MF and in SS, increasing with advancing disease. Several CCR4-targeted therapies are being evaluated, including "chemotoxins" targeting CCR4 via CCL17, CCR4-directed chimeric antigen receptor-modified T-cell therapies, small-molecule CCR4 antagonists, and anti-CCR4 monoclonal antibodies. Only one is currently approved: mogamulizumab, a defucosylated, fully humanized, anti-CCR4, monoclonal antibody for the treatment of relapsed/refractory MF and SS. Clinical trial da1ta confirm that mogamulizumab is an effective and well-tolerated treatment for relapsed/refractory MF or SS, demonstrating the clinical value of targeting CCR4.
Collapse
Affiliation(s)
- Jan P Nicolay
- Department of Dermatology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jana D Albrecht
- Department of Dermatology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Silvia Alberti-Violetti
- Dipartimento di Medicina Interna, UOC Dermatologia, IRCCS Ca' Granda Foundation-Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilio Berti
- Dipartimento di Medicina Interna, UOC Dermatologia, IRCCS Ca' Granda Foundation-Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
25
|
Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Pallesen EMH, Gluud M, Bzorek M, Nielsen BS, Kamstrup MR, Rittig AH, Bonefeld CM, Krejsgaard T, Geisler C, Koralov SB, Litman T, Becker JC, Woetmann A, Iversen L, Odum N. Staphylococcus aureus Induces Signal Transducer and Activator of Transcription 5‒Dependent miR-155 Expression in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2021; 141:2449-2458. [PMID: 33862068 DOI: 10.1016/j.jid.2021.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022]
Abstract
Staphylococcal enterotoxins are believed to fuel disease activity in cutaneous T-cell lymphoma. Recent data support this by showing that antibiotics inhibit malignant T cells in skin lesions in mycosis fungoides and Sézary syndrome, the most common forms of cutaneous T-cell lymphoma. Yet, it remains incompletely characterized how staphylococcal enterotoxins fuel disease activity. In this study, we show that staphylococcal enterotoxins induce the expression of the oncogenic microRNA miR-155 in primary malignant T cells. Thus, staphylococcal enterotoxins and Staphyloccocus aureus isolates from lesional skin of patients induce miR-155 expression at least partly through the IL-2Rg‒Jak‒signal transducer and activator of transcription 5 pathway, and the effect is augmented by the presence of nonmalignant T cells. Importantly, mycosis fungoides lesions harbor S. aureus, express Y-phosphorylated signal transducer and activator of transcription 5, and display enhanced miR-155 expression, when compared with nonlesional and healthy skin. Preliminary data show that aggressive antibiotic therapy is associated with decreased Y-phosphorylated signal transducer and activator of transcription 5 and miR-155 expression in lesional skin in two patients with Sézary syndrome. In conclusion, we show that S. aureus and its enterotoxins induce enhanced expression of oncogenic miR-155, providing mechanistic insight into the role of S. aureus in cutaneous T-cell lymphoma. Our findings support that environmental stimuli such as bacteria can fuel disease progression in cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Emil M H Pallesen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | | | - Maria R Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Anne Hald Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotte M Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jurgen C Becker
- Department of Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital of Essen, Essen, Germany; Deutsches Krebsforschungsinstitut (DKFZ), Heidelberg, Germany
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Durgin JS, Weiner DM, Wysocka M, Rook AH. The immunopathogenesis and immunotherapy of cutaneous T cell lymphoma: Pathways and targets for immune restoration and tumor eradication. J Am Acad Dermatol 2021; 84:587-595. [PMID: 33352267 PMCID: PMC7897252 DOI: 10.1016/j.jaad.2020.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Cutaneous T cell lymphomas (CTCLs) are malignancies of skin-trafficking T cells. Patients with advanced CTCL manifest immune dysfunction that predisposes to infection and suppresses the antitumor immune response. Therapies that stimulate immunity have produced superior progression-free survival compared with conventional chemotherapy, reinforcing the importance of addressing the immune deficient state in the care of patients with CTCL. Recent research has better defined the pathogenesis of these immune deficits, explaining the mechanisms of disease progression and revealing potential therapeutic targets. The features of the malignant cell in mycosis fungoides and Sézary syndrome are now significantly better understood, including the T helper 2 cell phenotype, regulatory T cell cytokine production, immune checkpoint molecule expression, chemokine receptors, and interactions with the microenvironment. The updated model of CTCL immunopathogenesis provides understanding into clinical progression and therapeutic response.
Collapse
Affiliation(s)
- Joseph S Durgin
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Weiner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Stolearenco V, Namini MRJ, Hasselager SS, Gluud M, Buus TB, Willerslev-Olsen A, Ødum N, Krejsgaard T. Cellular Interactions and Inflammation in the Pathogenesis of Cutaneous T-Cell Lymphoma. Front Cell Dev Biol 2020; 8:851. [PMID: 33015047 PMCID: PMC7498821 DOI: 10.3389/fcell.2020.00851] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) comprises a group of lymphoproliferative diseases characterized by the accumulation of malignant T cells in chronically inflamed skin lesions. In early stages, the disease presents as skin patches or plaques covering a limited area of the skin and normally follows an indolent course. However, in a subset of patients the cutaneous lesions develop into tumors and the malignant T cells may spread to the lymphatic system, blood and internal organs with fatal consequences. Despite intensive research, the mechanisms driving disease progression remain incompletely understood. While most studies have focused on cancer cell-intrinsic oncogenesis, such as genetic and epigenetic events driving malignant transformation and disease progression, an increasing body of evidence shows that the interplay between malignant T cells and non-malignant cells plays a crucial role. Here, we outline some of the emerging mechanisms by which tumor, stromal and epidermal interactions may contribute to the progression of CTCL with particular emphasis on the crosstalk between fibroblasts, keratinocytes and malignant T cells.
Collapse
Affiliation(s)
- Veronica Stolearenco
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Siri S Hasselager
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Abstract
Cutaneous T-cell lymphomas are a heterogeneous collection of non-Hodgkin lymphomas that arise from skin-tropic memory T lymphocytes. Among them, mycosis fungoides (MF) and Sézary syndrome (SS) are the most common malignancies. Diagnosis requires the combination of clinical, pathologic, and molecular features. Significant advances have been made in understanding the genetic and epigenetic aberrations in SS and to some extent in MF. Several prognostic factors have been identified. The goal of treatment is to minimize morbidity and limit disease progression. However, hematopoietic stem cell transplantation, considered for patients with advanced stages, is the only therapy with curative intent.
Collapse
Affiliation(s)
- Cecilia Larocca
- Department of Dermatology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA.
| | - Thomas Kupper
- Department of Dermatology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| |
Collapse
|
29
|
Willerslev-Olsen A, Buus TB, Nastasi C, Blümel E, Gluud M, Bonefeld CM, Geisler C, Lindahl LM, Vermeer M, Wasik MA, Iversen L, Becker JC, Andersen MH, Gjerdrum LMR, Litvinov IV, Litman T, Krejsgaard T, Woetmann A, Ødum N. Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome. Blood Cancer J 2020; 10:57. [PMID: 32409671 PMCID: PMC7225173 DOI: 10.1038/s41408-020-0324-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Sézary syndrome (SS) is a heterogeneous leukemic subtype of cutaneous T-cell lymphoma (CTCL) with generalized erythroderma, lymphadenopathy, and a poor prognosis. Advanced disease is invariably associated with severe immune dysregulation and the majority of patients die from infectious complications caused by microorganisms such as, Staphylococcus aureus, rather than from the lymphoma per se. Here, we examined if staphylococcal enterotoxins (SE) may shape the phenotype of malignant SS cells, including expression of the regulatory T-cell-associated marker FOXP3. Our studies with primary and cultured malignant cells show that SE induce expression of FOXP3 in malignant cells when exposed to nonmalignant cells. Mutations in the MHC class II binding domain of SE-A (SEA) largely block the effect indicating that the response relies at least in part on the MHC class II-mediated antigen presentation. Transwell experiments show that the effect is induced by soluble factors, partly blocked by anti-IL-2 antibody, and depends on STAT5 activation in malignant cells. Collectively, these findings show that SE stimulate nonmalignant cells to induce FOXP3 expression in malignant cells. Thus, differences in exposure to environmental factors, such as bacterial toxins may explain the heterogeneous FOXP3 expression in malignant cells in SS.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B Buus
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Edda Blümel
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Maarten Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital of Essen, Essen, Germany.,Deutsches Krebsforschungsinstitut (DKFZ), Heidelberg, Germany
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Lise M R Gjerdrum
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Thomas Litman
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
Blümel E, Munir Ahmad S, Nastasi C, Willerslev-Olsen A, Gluud M, Fredholm S, Hu T, Surewaard BGJ, Lindahl LM, Fogh H, Koralov SB, Rahbek Gjerdrum LM, Clark RA, Iversen L, Krejsgaard T, Bonefeld CM, Geisler C, Becker JC, Woetmann A, Andersen MH, Buus TB, Ødum N. Staphylococcus aureus alpha-toxin inhibits CD8 + T cell-mediated killing of cancer cells in cutaneous T-cell lymphoma. Oncoimmunology 2020; 9:1751561. [PMID: 32363124 PMCID: PMC7185203 DOI: 10.1080/2162402x.2020.1751561] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus and its toxins have been linked to disease progression and mortality in advanced stages of cutaneous T-cell lymphoma (CTCL). CD8+ T cells play a crucial role in anti-cancer responses and high CD8+ T cell numbers in tumor lesions are associated with a favorable prognosis in CTCL. Here, we show that CD8+ T cells from both healthy donors and Sézary syndrome patients are highly susceptible to cell death induced by Staphylococcal alpha-toxin, whereas malignant T cells are not. Importantly, alpha-toxin almost completely blocks cytotoxic killing of CTCL tumor cells by peptide-specific CD8+ T cells, leading to their escape from induced cell death and continued proliferation. These findings suggest that alpha-toxin may favor the persistence of malignant CTCL cells in vivo by inhibiting CD8+ T cell cytotoxicity. Thus, we propose a novel mechanism by which colonization with Staphylococcus aureus may contribute to cancer immune evasion and disease progression in CTCL.
Collapse
Affiliation(s)
- Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bas G. J. Surewaard
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Fogh
- Department of Dermatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, USA
| | | | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), Essen, Germany
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Expression Profiles of Genes Encoding Cornified Envelope Proteins in Atopic Dermatitis and Cutaneous T-Cell Lymphomas. Nutrients 2020; 12:nu12030862. [PMID: 32213830 PMCID: PMC7146369 DOI: 10.3390/nu12030862] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022] Open
Abstract
The skin barrier defect in cutaneous T-cell lymphomas (CTCL) was recently confirmed to be similar to the one observed in atopic dermatitis (AD). We have examined the expression level of cornified envelope (CE) proteins in CTCL, AD and healthy skin, to search for the differences and their relation to the courses of both diseases. The levels of FLG, FLG2, RPTN, HRNR, SPRR1A, SPRR1B, SPRR3 and LELP-1 mRNA were determined by qRT-PCR, while protein levels were examined using the ELISA method in skin samples. We have found that mRNA levels of FLG, FLG2, LOR, CRNN and SPRR3v1 were decreased (p ≤ 0.04), whereas mRNA levels of RPTN, HRNR and SPRR1Av1 were increased in lesional and nonlesional AD skin compared to the healthy control group (p ≤ 0.04). The levels of FLG, FLG2, CRNN, SPRR3v1 mRNA increased (p ≤ 0.02) and RPTN, HRNR and SPRR1Av1 mRNA decreased (p ≤ 0.005) in CTCL skin compared to the lesional AD skin. There was a strong correlation between the stage of CTCL and increased SPRR1Av1 gene expression at both mRNA (R = 0.89; p ≤ 0.05) and protein levels (R = 0.94; p ≤ 0.05). FLG, FLG2, RPTN, HRNR and SPRR1A seem to play a key role in skin barrier dysfunction in CTCL and could be considered a biomarker for differential diagnosis of AD and CTCL. SPRR1Av1 transcript levels seem to be a possible marker of CTCL stage, however, further studies on a larger study group are needed to confirm our findings.
Collapse
|
32
|
Csoboz B, Rasheed K, Sveinbjørnsson B, Moens U. Merkel cell polyomavirus and non-Merkel cell carcinomas: guilty or circumstantial evidence? APMIS 2020; 128:104-120. [PMID: 31990105 DOI: 10.1111/apm.13019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Merkel cell polyomavirus (MCPyV) is the major causative factor of the rare but aggressive cancer, Merkel cell carcinoma (MCC). Two characteristics of MCPyV-positive MCCs are integration of the viral genome and expression of a truncated version of one of its oncogenic proteins, namely large T antigen. The strong association of MCPyV with MCC development has incited researchers to further investigate a possible role of this virus in other cancers. However, many of the examples displaying the presence of the virus in the various non-MCC cancers are not able to clearly demonstrate a direct connection between cellular transformation and the presence of the virus. The prevalence of the virus is significantly lower in non-MCC cancers compared to MCCs, with a lower level of viral load and sparse viral protein expression. Moreover, the state of the viral genome, and whether a truncated large T antigen is expressed, has rarely been investigated. Nonetheless, considering the strong oncogenic potential of MCPyV proteins in MCC, the plausible contribution of MCPyV to transformation and cancer growth in non-MCC tumors cannot be ruled out. Furthermore, the absence of MCPyV in cancers does not exclude a hit-and-run mechanism, or the oncoproteins of MCPyV may potentiate the neoplastic process mediated by co-infecting oncoviruses such as high-risk human papillomaviruses and Epstein-Barr virus. The current review is focusing on the available data describing the presence of MCPyV in non-MCC tumors, with an aim to provide a comprehensive overview of the corresponding literature and to discuss the potential contribution of MCPyV to non-MCC cancer in light of this.
Collapse
Affiliation(s)
- Balint Csoboz
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kashif Rasheed
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
33
|
Lewis DJ. Cutaneous microbiota in the pathogenesis of cutaneous T‐cell lymphoma and the role of antibiotic therapy. Int J Dermatol 2020; 59:e223-e224. [DOI: 10.1111/ijd.14798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel J. Lewis
- Department of Dermatology Perelman School of Medicine at the University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
34
|
Fukutani ER, Ramos PIP, Kasprzykowski JI, Azevedo LG, Rodrigues MMDS, Lima JVDOP, de Araújo Junior HFS, Fukutani KF, de Queiroz ATL. Meta-Analysis of HTLV-1-Infected Patients Identifies CD40LG and GBP2 as Markers of ATLL and HAM/TSP Clinical Status: Two Genes Beat as One. Front Genet 2019; 10:1056. [PMID: 31781157 PMCID: PMC6857459 DOI: 10.3389/fgene.2019.01056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/02/2019] [Indexed: 01/18/2023] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) was the first recognized human retrovirus. Infection can lead to two main symptomatologies: adult T-cell lymphoma/leukemia (ATLL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Each manifestation is associated with distinct characteristics, as ATLL presents as a leukemia-like disease, while HAM/TSP presents as severe inflammation in the central nervous system, leading to paraparesis. Previous studies have identified molecules associated with disease development, e.g., the downregulation of Foxp3 in Treg cells was associated with increased risk of HAM/TSP. In addition, elevated levels of CXCL10, CXCL9, and Neopterin in cerebrospinal fluid also present increased risk. However, these molecules were only associated with specific patient groups or viral strains. Furthermore, the majority of studies did not jointly compare all clinical manifestations, and robust analysis entails the inclusion of both ATLL and HAM/TSP. The low numbers of samples also pose difficulties in conducting gene expression analysis to identify specific molecular relationships. To address these limitations and increase the power of manifestation-specific gene associations, meta-analysis was performed using publicly available gene expression data. The application of supervised learning techniques identified alterations in two genes observed to act in tandem as potential biomarkers: GBP2 was associated with HAM/TSP, and CD40LG with ATLL. Together, both molecules demonstrated high sample-classification accuracy (AUC values: 0.88 and 1.0, respectively). Next, other genes with expression correlated to these genes were identified, and we attempted to relate the enriched pathways identified with the characteristic of each clinical manifestation. The present findings contribute to knowledge surrounding viral progression and suggest a potentially powerful new tool for the molecular classification of HTLV-associated diseases.
Collapse
Affiliation(s)
- Eduardo Rocha Fukutani
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - José Irahe Kasprzykowski
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Lucas Gentil Azevedo
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | | | | | | | - Kiyoshi Ferreira Fukutani
- Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Fundação José Silveira, Multinational Organization Network Sponsoring Translational and Epidemiological Research, FJS, Salvador, Brazil.,Faculdade de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Brazil
| | | |
Collapse
|
35
|
Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood 2019; 134:1072-1083. [PMID: 31331920 DOI: 10.1182/blood.2018888107] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that CD4 T-cell responses to Staphylococcus aureus (SA) can inadvertently enhance neoplastic progression in models of skin cancer and cutaneous T-cell lymphoma (CTCL). In this prospective study, we explored the effect of transient antibiotic treatment on tumor cells and disease activity in 8 patients with advanced-stage CTCL. All patients experienced significant decrease in clinical symptoms in response to aggressive, transient antibiotic treatment. In some patients, clinical improvements lasted for more than 8 months. In 6 of 8 patients, a malignant T-cell clone could be identified in lesional skin, and a significant decrease in the fraction of malignant T cells was observed following antibiotics but an otherwise unchanged treatment regimen. Immunohistochemistry, global messenger RNA expression, and cell-signaling pathway analysis indicated that transient aggressive antibiotic therapy was associated with decreased expression of interleukin-2 high-affinity receptors (CD25), STAT3 signaling, and cell proliferation in lesional skin. In conclusion, this study provides novel evidence suggesting that aggressive antibiotic treatment inhibits malignant T cells in lesional skin. Thus, we provide a novel rationale for treatment of SA in advanced CTCL.
Collapse
|
36
|
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that are characterized by primary skin involvement. Mycosis fungoides (MF) and Sézary syndrome (SS), the two most common subtypes of CTCL, can be difficult to manage clinically as there are few effective treatment options available. Recently, histone deacetylase inhibitors (HDACi) have emerged as promising therapies with favorable adverse effect profiles, compared with traditional chemotherapies. In this article, we review the published literature to evaluate the role of HDACi in the treatment of CTCL. Specifically, we (1) briefly discuss the molecular rationale for the use of HDACi in CTCL; (2) compare the efficacy, tolerability, and adverse effects of HDACi; (3) review the cardiac safety data; and (4) discuss optimization of therapy with HDACi in the treatment of CTCL.
Collapse
|
37
|
Demina OM, Akilov OE, Rumyantsev AG. Cutaneous T-cell lymphomas: modern data of pathogenesis, clinics and therapy. ONCOHEMATOLOGY 2018. [DOI: 10.17650/1818-8346-2018-13-3-25-38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of extranodal non-Hodgkin’s lymphomas that are characterized by skin infiltration with malignant monoclonal T lymphocytes. More common in adults aged 55 to 60 years, the annual incidence is about 0.5 per 100 000 people. Mycosis fungoides, Sézary syndrome and CD30+ lymphoproliferative diseases are the main subtypes of CTCL. To date, CTCL have a complex concept of etiopathogenesis, diagnosis, therapy and prognosis. The article presented summary data on these issues.
Collapse
Affiliation(s)
- O. M. Demina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
| | - O. E. Akilov
- University of Pittsburgh, Department of Dermatology, Cutaneous Lymphoma Clinics
| | - A. G. Rumyantsev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
| |
Collapse
|
38
|
Kreuter A, Pantelaki I, Michalowitz AL, Wieland U, Cerroni L, Oellig F, Tigges C. CD30-positive primary cutaneous anaplastic large cell lymphoma with coexistent pseudocarcinomatous hyperplasia. Clin Exp Dermatol 2018; 43:585-588. [DOI: 10.1111/ced.13416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 12/01/2022]
Affiliation(s)
- A. Kreuter
- Department of Dermatology, Venereology and Allergology; HELIOS St. Elisabeth Hospital Oberhausen; University Witten-Herdecke; Oberhausen Germany
| | - I. Pantelaki
- Department of Dermatology, Venereology and Allergology; HELIOS St. Elisabeth Hospital Oberhausen; University Witten-Herdecke; Oberhausen Germany
| | - A.-L. Michalowitz
- Department of Dermatology, Venereology and Allergology; HELIOS St. Elisabeth Hospital Oberhausen; University Witten-Herdecke; Oberhausen Germany
| | - U. Wieland
- National Reference Center for Papilloma- and Polyomaviruses; Institute of Virology; University of Cologne; Cologne Germany
| | - L. Cerroni
- Dermatopathology Unit; Department of Dermatology; Medical University of Graz; Graz Austria
| | - F. Oellig
- Institute of Pathology; Mülheim an der Ruhr; Mülheim Germany
| | - C. Tigges
- Department of Dermatology, Venereology and Allergology; HELIOS St. Elisabeth Hospital Oberhausen; University Witten-Herdecke; Oberhausen Germany
| |
Collapse
|
39
|
Manfrere KCG, Torrealba MP, Miyashiro DR, Oliveira LMS, de Carvalho GC, Lima JF, Branco ACCC, Pereira NZ, Pereira J, Sanches JA, Sato MN. Toll-like receptor agonists partially restore the production of pro-inflammatory cytokines and type I interferon in Sézary syndrome. Oncotarget 2018; 7:74592-74601. [PMID: 27780938 PMCID: PMC5342689 DOI: 10.18632/oncotarget.12816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Sézary syndrome (SS) carries a poor prognosis, and infections represent the most frequent cause of death in SS patients. Toll-like receptors (TLRs) are a family of innate immune receptors that induce protective immune responses against infections. We sought to evaluate the ability of TLR agonists to induce inflammatory cytokine, Th2 cytokine, and type I interferon (IFN-I) production by peripheral blood mononuclear cells (PBMC) of untreated SS patients. We detected impaired IL-6, IL-10 and IL-13 secretion by PBMC induced by the agonists for TLR5, TLR3, TLR7 and TLR9 in SS patients, while it was partially recovered by TLR2/TLR4 and TLR7/8 agonists TNF secretion was restored following stimulation with TLR2/TLR4 agonists. IFN-γ was scarcely produced upon TLR activation in SS cells, albeit TLR 7/8 (CL097) enhanced their secretion at lower levels than the control group. TLR9 agonist efficiently induced IFN-I in SS patients, although this positive regulation was not observed for other cytokines, in direct contrast to the broad activity of CL097. Among the TLR agonists, TLR4 was able to induce pro-inflammatory, IL-10 and Th2 secretion, while TLR7-8 agonist induced the inflammatory cytokines, IFN-I and IFN-γ. These findings reveal a dysfunctional cytokine response upon both extracellular and intracellular TLR activation in SS patients, which was partially restored by TLRs agonists.
Collapse
Affiliation(s)
- Kelly C G Manfrere
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Marina P Torrealba
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Denis R Miyashiro
- Department of Dermatology, Cutaneous Lymphoma Clinic, Hospital das Clínicas, University of São Paulo, Medical School, Brazil
| | - Luanda M S Oliveira
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Gabriel C de Carvalho
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Josenilson F Lima
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Anna Claudia C C Branco
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Nátalli Z Pereira
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Juliana Pereira
- Department of Hematology, University of São Paulo Medical School, Brazil
| | - José A Sanches
- Department of Dermatology, Cutaneous Lymphoma Clinic, Hospital das Clínicas, University of São Paulo, Medical School, Brazil
| | - Maria N Sato
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| |
Collapse
|
40
|
Lindahl LM, Fredholm S, Joseph C, Nielsen BS, Jønson L, Willerslev-Olsen A, Gluud M, Blümel E, Petersen DL, Sibbesen N, Hu T, Nastasi C, Krejsgaard T, Jæhger D, Persson JL, Mongan N, Wasik MA, Litvinov IV, Sasseville D, Koralov SB, Bonefeld CM, Geisler C, Woetmann A, Ralfkiaer E, Iversen L, Odum N. STAT5 induces miR-21 expression in cutaneous T cell lymphoma. Oncotarget 2018; 7:45730-45744. [PMID: 27329723 PMCID: PMC5216756 DOI: 10.18632/oncotarget.10160] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023] Open
Abstract
In cutaneous T cell lymphomas (CTCL), miR-21 is aberrantly expressed in skin and peripheral blood and displays anti-apoptotic properties in malignant T cells. It is, however, unclear exactly which cells express miR-21 and what mechanisms regulate miR-21. Here, we demonstrate miR-21 expression in situ in both malignant and reactive lymphocytes as well as stromal cells. qRT-PCR analysis of 47 patients with mycosis fungoides (MF) and Sezary Syndrome (SS) confirmed an increased miR-21 expression that correlated with progressive disease. In cultured malignant T cells miR-21 expression was inhibited by Tofacitinib (CP-690550), a clinical-grade JAK3 inhibitor. Chromatin immunoprecipitation (ChIP) analysis showed direct binding of STAT5 to the miR-21 promoter. Cytokine starvation ex vivo triggered a decrease in miR-21 expression, whereas IL-2 induced an increased miR-21 expression in primary SS T cells and cultured cytokine-dependent SS cells (SeAx). siRNA-mediated depletion of STAT5 inhibited constitutive- and IL-2-induced miR-21 expression in cytokine-independent and dependent T cell lines, respectively. IL-15 and IL-2 were more potent than IL-21 in inducing miR-21 expression in the cytokine-dependent T cells. In conclusion, we provide first evidence that miR-21 is expressed in situ in CTCL skin lesions, induced by IL-2 and IL-15 cytokines, and is regulated by STAT5 in malignant T cells. Thus, our data provide novel evidence for a pathological role of IL-2Rg cytokines in promoting expression of the oncogenic miR-21 in CTCL.
Collapse
Affiliation(s)
- Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Fredholm
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudine Joseph
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Jønson
- Department of Molecular Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Maria Gluud
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Edda Blümel
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David L Petersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Nina Sibbesen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tengpeng Hu
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Jæhger
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Nigel Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan V Litvinov
- Division of Dermatology, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Ralfkiaer
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Odum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Netchiporouk E, Gantchev J, Tsang M, Thibault P, Watters AK, Hughes JDM, Ghazawi FM, Woetmann A, Ødum N, Sasseville D, Litvinov IV. Analysis of CTCL cell lines reveals important differences between mycosis fungoides/Sézary syndrome vs. HTLV-1+ leukemic cell lines. Oncotarget 2017; 8:95981-95998. [PMID: 29221181 PMCID: PMC5707075 DOI: 10.18632/oncotarget.21619] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
HTLV-1 is estimated to affect ~20 million people worldwide and in ~5% of carriers it produces Adult T-Cell Leukemia/Lymphoma (ATLL), which can often masquerade and present with classic erythematous pruritic patches and plaques that are typically seen in Mycosis Fungoides (MF) and Sézary Syndrome (SS), the most recognized variants of Cutaneous T-Cell Lymphomas (CTCL). For many years the role of HTLV-1 in the pathogenesis of MF/SS has been hotly debated. In this study we analyzed CTCL vs. HTLV-1+ leukemic cells. We performed G-banding/spectral karyotyping, extensive gene expression analysis, TP53 sequencing in the 11 patient-derived HTLV-1+ (MJ and Hut102) vs. HTLV-1- (Myla, Mac2a, PB2B, HH, H9, Hut78, SZ4, Sez4 and SeAx) CTCL cell lines. We further tested drug sensitivities to commonly used CTCL therapies and studied the ability of these cells to produce subcutaneous xenograft tumors in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice. Our work demonstrates that unlike classic advanced MF/SS cells that acquire many ongoing balanced and unbalanced chromosomal translocations, HTLV-1+ CTCL leukemia cells are diploid and exhibit only a minimal number of non-specific chromosomal alterations. Our results indicate that HTLV-1 virus is likely not involved in the pathogenesis of classic MF/SS since it drives a very different pathway of lymphomagenesis based on our findings in these cells. This study also provides for the first time a comprehensive characterization of the CTCL cells with respect to gene expression profiling, TP53 mutation status, ability to produce tumors in mice and response to commonly used therapies.
Collapse
Affiliation(s)
| | - Jennifer Gantchev
- Division of Dermatology, McGill University, Montréal, Québec, Canada
| | - Matthew Tsang
- Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| | - Philippe Thibault
- Université de Sherbrooke Rnomics Platform, Sherbrooke, Québec, Canada
| | - Andrew K Watters
- Department of Pathology, McGill University Health Centre, Montreal, Québec, Canada
| | | | - Feras M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| | - Anders Woetmann
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Denis Sasseville
- Division of Dermatology, McGill University, Montréal, Québec, Canada
| | - Ivan V Litvinov
- Division of Dermatology, McGill University, Montréal, Québec, Canada.,Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
42
|
Wang Y, Ren B, Zhou X, Liu S, Zhou Y, Li B, Jiang Y, Li M, Feng M, Cheng L. Growth and adherence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells. PLoS One 2017; 12:e0177166. [PMID: 28472126 PMCID: PMC5417706 DOI: 10.1371/journal.pone.0177166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated.
Collapse
Affiliation(s)
- Yuxia Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LC); (MF)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LC); (MF)
| |
Collapse
|
43
|
Lynoora ER. SEZARY SYNDROME MIMICKING GENERALIZED PSORIASIS VULGARIS. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2017. [DOI: 10.20473/ijtid.v6i3.3134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Sezary syndrome is the one type of cutaneous T cell. This disease is characterized by reddish patches or plaques on the skin which extends to whole body into erythroderma, lymphadenopathy and presence of atypical lymphocytes called Sezary cells.Purpose: To know clinical manifestation, examination and management of Sezary syndrome which clinically resembles generalized psoriasis.Case: A man 60 years old came with scaly plaques reddish brown on almost of his body accompanied by lymphadenopathy on the supraclavicular lymph node right and left and accompanied by intense itchy also. Another clinical features were alopecia, palmoplantar hyperkeratosis, onychodysthropy, facies leonine without anesthesia on the lesion and without enlargement of peripheral nerve. From laboratory test, there is an increasing in the number of leukocytes, from the peripheral blood smear examination found Sezary cells and histopathology showed focal athrophy and acanthosis of the epidermis and dense infiltration of lymphocytes in the dermo-epidermal junction and superficial dermis. Case management: Patient received methotrexate (MTX) 3 x 5 mg (1 cylcle) with mometasone furoate 0,1% cream and CTM 3x1 tablet for adjunctive therapy. Methotrexte was discontinued because there are increasing of liver function and deterioration of patient’s condition. After 25 days of treatment, the patient got sepsis and then the patient died. Conclusion: Early onset of Sezary syndrome in this case is difficult to know because the clinical manifestation is similar with psoriasis vulgaris. Supporting examination such as laboratory test, blood smears and histopathology examination could help diagnosis. The presence of lymphadenopathy, atypical lymphocytes in the peripheral blood and extensive skin involvement reflecting the poor prognosis. The most common cause of death was sepsis.
Collapse
|
44
|
Ma H, Abdul-Hay M. T-cell lymphomas, a challenging disease: types, treatments, and future. Int J Clin Oncol 2016; 22:18-51. [PMID: 27743148 PMCID: PMC7102240 DOI: 10.1007/s10147-016-1045-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
T-cell lymphomas are rare and aggressive malignancies associated with poor outcome, often because of the development of resistance in the lymphoma against chemotherapy as well as intolerance in patients to the established and toxic chemotherapy regimens. In this review article, we discuss the epidemiology, pathophysiology, current standard of care, and future treatments of common types of T-cell lymphomas, including adult T-cell leukemia/lymphoma, angioimmunoblastic T-cell lymphoma, anaplastic large-cell lymphoma, aggressive NK/T-cell lymphoma, and cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Helen Ma
- Department of Internal Medicine, New York University, New York, NY, USA
| | - Maher Abdul-Hay
- Department of Internal Medicine, New York University, New York, NY, USA. .,Perlmutter Cancer Center, New York University, New York, NY, USA.
| |
Collapse
|
45
|
Thestrup-Pedersen K. Cutaneous T-Cell Lymphoma. A hypothesis on disease pathophysiology involving deficiency in DNA repair. J Eur Acad Dermatol Venereol 2016; 30:1682-1685. [DOI: 10.1111/jdv.13852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/24/2016] [Indexed: 11/28/2022]
|
46
|
Caselli E, Borghi A, Maritati M, Gafà R, Lanza G, Di Luca D, Virgili A, Contini C. Relapses of primary cutaneous anaplastic large-cell lymphoma in a female immunocompetent patient with persistent chlamydophila pneumoniae and human herpesvirus 8 infection. Infect Agent Cancer 2016; 11:31. [PMID: 27382410 PMCID: PMC4932675 DOI: 10.1186/s13027-016-0079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022] Open
Abstract
Background We have previously reported the case of an immunocompetent female patient with a primary cutaneous CD30+ anaplastic large-cell lymphoma (PCALCL) located on her upper right eyelid characterized by the presence of a concurrent active infection by C. pneumoniae and Human herpesvirus 8 (HHV8). This finding suggested for the first time a possible association of C. pneumoniae and/or HHV8 infection, or both together, with PCALCL pathogenesis in non-immunocompromised and HIV-negative subjects. The subsequent course of the same patient’s medical history is herein reported. Findings During the 4 years following the surgical excision of the first PCALCL, the patient developed five further skin lesions located at different anatomical sites, all histologically proven as PCALCLs. The patient underwent several cycles of doxycycline as prophylaxis against Chlamydia. Skin presence of Chlamydia spp and HHV8 was investigated in all recurrences as well as in routine control blood samples. Amplification fragments corresponding to Chlamydia were found in all skin tissues analysed except one (4/5; 80 %), whereas it was not detected in any of the peripheral blood mononuclear cell samples. Conversely, HHV8 was detected in 2/5 (40 %) of the skin biopsies, including the sample negative for Chlamydia, but in all the blood samples analysed. Conclusions These findings further support the hypothesis of a potential role of C. pneumoniae and HHV8 infection in the development and course of the described cutaneous lymphoma. A reciprocally promoting interaction between the two pathogens may be supposed to be relevant for PCALC occurrence and relapse.
Collapse
Affiliation(s)
- Elisabetta Caselli
- Department of Medical Sciences, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Alessandro Borghi
- Department of Medical Sciences, Section of Dermatology and Infectious Diseases, University of Ferrara, Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, Section of Dermatology and Infectious Diseases, University of Ferrara, Ferrara, Italy
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology and Molecular Diagnostics, University of Ferrara, Ferrara, Italy
| | - Giovanni Lanza
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology and Molecular Diagnostics, University of Ferrara, Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Annarosa Virgili
- Department of Medical Sciences, Section of Dermatology and Infectious Diseases, University of Ferrara, Ferrara, Italy
| | - Carlo Contini
- Department of Medical Sciences, Section of Dermatology and Infectious Diseases, University of Ferrara, Ferrara, Italy
| |
Collapse
|
47
|
|
48
|
Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood 2016; 127:1287-96. [PMID: 26738536 DOI: 10.1182/blood-2015-08-662353] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by proliferation of malignant T cells in a chronic inflammatory environment. With disease progression, bacteria colonize the compromised skin barrier and half of CTCL patients die of infection rather than from direct organ involvement by the malignancy. Clinical data indicate that bacteria play a direct role in disease progression, but little is known about the mechanisms involved. Here, we demonstrate that bacterial isolates containing staphylococcal enterotoxin A (SEA) from the affected skin of CTCL patients, as well as recombinant SEA, stimulate activation of signal transducer and activator of transcription 3 (STAT3) and upregulation of interleukin (IL)-17 in immortalized and primary patient-derived malignant and nonmalignant T cells. Importantly, SEA induces STAT3 activation and IL-17 expression in malignant T cells when cocultured with nonmalignant T cells, indicating an indirect mode of action. In accordance, malignant T cells expressing an SEA-nonresponsive T-cell receptor variable region β chain are nonresponsive to SEA in monoculture but display strong STAT3 activation and IL-17 expression in cocultures with SEA-responsive nonmalignant T cells. The response is induced via IL-2 receptor common γ chain cytokines and a Janus kinase 3 (JAK3)-dependent pathway in malignant T cells, and blocked by tofacitinib, a clinical-grade JAK3 inhibitor. In conclusion, we demonstrate that SEA induces cell cross talk-dependent activation of STAT3 and expression of IL-17 in malignant T cells, suggesting a mechanism whereby SEA-producing bacteria promote activation of an established oncogenic pathway previously implicated in carcinogenesis.
Collapse
|
49
|
Litvinov IV, Tetzlaff MT, Rahme E, Jennings MA, Risser DR, Gangar P, Netchiporouk E, Moreau L, Prieto VG, Sasseville D, Duvic M. Demographic patterns of cutaneous T-cell lymphoma incidence in Texas based on two different cancer registries. Cancer Med 2015; 4:1440-7. [PMID: 26136403 PMCID: PMC4567029 DOI: 10.1002/cam4.472] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/08/2015] [Indexed: 12/29/2022] Open
Abstract
Cutaneous T-cell lymohomas (CTCLs) are rare, but potentially devastating malignancies, with Mycosis fungoides and Sézary Syndrome being the most common. In our previous study, we identified and described regions of geographic clustering of CTCL cases in Texas by analyzing ∼1990 patients using two distinct cancer registries. In the current work, we describe in detail demographic patterns for this malignancy in our study population and apply logistic regression models to analyze the incidence of CTCL by sex, race, age, and clinical stage at the time of diagnosis. Furthermore, using Fisher's exact test, we analyze changes in incidence over time in the identified Houston communities with unusually high CTCL incidence. While CTCL primarily affects Caucasian individuals >55 years old, we confirm that it presents at a younger age and with more advanced disease stages in African-American and Hispanic individuals. Also, we demonstrate a significant increase in CTCL incidence over time in the identified communities. Spring, Katy, and Houston Memorial areas had high baseline rates. Furthermore, a statistically significant disease surge was observed in these areas after ∼2005. This report supplements our initial study documenting the existence of geographic clustering of CTCL cases in Texas and in greater detail describes demographic trends for our patient population. The observed surge in CTCL incidence in the three identified communities further argues that this malignancy may be triggered by one or more external etiologic agents.
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology, McGill University, Montreal, Quebec, Canada
| | - Michael T Tetzlaff
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elham Rahme
- Division of Clinical Epidemiology, McGill University, Montreal, Quebec, Canada
| | - Michelle A Jennings
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Risser
- Cancer Epidemiology and Surveillance Branch, Texas Cancer Registry, Department of State Health Services, Austin, Texas
| | - Pamela Gangar
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Linda Moreau
- Division of Dermatology, McGill University, Montreal, Quebec, Canada
| | - Victor G Prieto
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denis Sasseville
- Division of Dermatology, McGill University, Montreal, Quebec, Canada
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
50
|
Nahidi Y, Meibodi NT, Ghazvini K, Esmaily H, Hesamifard M. Evaluation of the Association Between Epstein-Barr Virus and Mycosis Fungoides. Indian J Dermatol 2015; 60:321. [PMID: 26120176 PMCID: PMC4458961 DOI: 10.4103/0019-5154.156423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Mycosis fungoides (MF) is the most common cutaneous T-cell lymphomas. Despite extensive studies, etiopathogenesis of MF is unknown. Environmental, infectious and genetic factors have been proposed as potential risk factors of MF. Herpes virus family members, especially Epstein-Barr virus (EBV), have been among the viral factors of interest in recent years. The aim of this study was to investigate the possible association of EBV infection with MF. MATERIALS AND METHODS This case-control study was performed on skin biopsy samples of 57 MF patients referred to Pathology Department of Mashhad Emam Reza Hospital from 2000 to 2011 and also on 57 melanocytic nevus samples matched with patients for age and sex. The presence of EBV in samples was evaluated by polymerase chain reaction. Statistical analysis of the data was conducted with the Statistical Package for the Social Sciences version 11.5 (SPSS Inc., Chicago, IL, USA). RESULTS In this study, out of 57 MF samples, there were 34 male and 23 female patients, with male:female ratio of 1.04. Mean patient age was 51.4 years. There were 22 and 4 positive cases of EBV in the case and control groups, respectively. Chi-square statistical test showed that EBV was significantly higher in case group than control (P = 0.000). There was no correlation between the presence of EBV in samples with lesion type, age and gender of the patients. CONCLUSION According to our study results, EBV is a likely etiologic agent or potential promoter in the pathogenesis of MF.
Collapse
Affiliation(s)
- Yalda Nahidi
- From the Department of Dermatology, Cutaneous Leishmanaisis Research Center, Mashhad, Iran
| | - Naser Tayyebi Meibodi
- Department of Pathology, Cutaneous Leishmanaisis Research Center, Mashhad, Iran
- Address for correspondence: Dr. Naser Tayyebi Meibodi, Cutaneous Leishmanaisis Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. E-mail:
| | - Kiarash Ghazvini
- Department of Microbiology, Research Center for Microbiology and Virilogy, Imam Reza Hospital, Faculty of Medicine, Mashhad, Iran
| | - Habiballah Esmaily
- Department of Biostatistics and epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Hesamifard
- Department of Emergency Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|