1
|
Park J, Nguyen TMN, Park HA, Nguyen MTT, Lee NY, Ban SY, Park KB, Lee CK, Kim J, Park JT. Protective Effects of Lanostane Triterpenoids from Chaga Mushroom in Human Keratinocytes, HaCaT Cells, against Inflammatory and Oxidative Stresses. Int J Mol Sci 2023; 24:12803. [PMID: 37628993 PMCID: PMC10454022 DOI: 10.3390/ijms241612803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Inotodiol, a lanostane-type triterpenoid, and many phytochemicals from Chaga mushrooms have been investigated for various allergic diseases. However, the anti-aging and anti-inflammatory activities of inotodiol under different types of oxidative stress and the impact of inotodiol on collagen and hyaluronan synthesis have not been sufficiently studied. Lanostane triterpenoids-rich concentrate, which contained 10% inotodiol as major (inotodiol concentrate), was prepared from Chaga and compared with pure inotodiol in terms of anti-inflammatory activities on a human keratinocyte cell line, HaCaT cells, under various stimulations such as stimulation with ultraviolet (UV) B or tumor necrosis factor (TNF)-α. In stimulation with TNF-α, interleukin (IL)-1β, IL-6, and IL-8 genes were significantly repressed by 0.44~4.0 μg/mL of pure inotodiol. UVB irradiation induced the overexpression of pro-inflammatory cytokines, but those genes were significantly suppressed by pure inotodiol or inotodiol concentrate. Moreover, pure inotodiol/inotodiol concentrate could also modulate the synthesis of collagen and hyaluronic acid by controlling COL1A2 and HAS2/3 expression, which implies a crucial role for pure inotodiol/inotodiol concentrate in the prevention of skin aging. These results illuminate the anti-inflammatory and anti-aging effects of pure inotodiol/inotodiol concentrate, and it is highly conceivable that pure inotodiol and inotodiol concentrate could be promising natural bioactive substances to be incorporated in therapeutic and beautifying applications.
Collapse
Affiliation(s)
- Jihyun Park
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea; (J.P.); (T.M.N.N.); (H.-a.P.); (N.-y.L.); (S.-y.B.); (K.-b.P.); (C.-k.L.)
| | - Thi Minh Nguyet Nguyen
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea; (J.P.); (T.M.N.N.); (H.-a.P.); (N.-y.L.); (S.-y.B.); (K.-b.P.); (C.-k.L.)
| | - Hyun-ah Park
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea; (J.P.); (T.M.N.N.); (H.-a.P.); (N.-y.L.); (S.-y.B.); (K.-b.P.); (C.-k.L.)
| | - My Tuyen Thi Nguyen
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (M.T.T.N.); (J.K.)
- College of Agriculture, Can Tho University, Can Tho City 94115, Vietnam
| | - Nan-young Lee
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea; (J.P.); (T.M.N.N.); (H.-a.P.); (N.-y.L.); (S.-y.B.); (K.-b.P.); (C.-k.L.)
| | - So-young Ban
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea; (J.P.); (T.M.N.N.); (H.-a.P.); (N.-y.L.); (S.-y.B.); (K.-b.P.); (C.-k.L.)
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (M.T.T.N.); (J.K.)
| | - Kyu-been Park
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea; (J.P.); (T.M.N.N.); (H.-a.P.); (N.-y.L.); (S.-y.B.); (K.-b.P.); (C.-k.L.)
| | - Chang-kyu Lee
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea; (J.P.); (T.M.N.N.); (H.-a.P.); (N.-y.L.); (S.-y.B.); (K.-b.P.); (C.-k.L.)
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; (M.T.T.N.); (J.K.)
| | - Jong-Tae Park
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea; (J.P.); (T.M.N.N.); (H.-a.P.); (N.-y.L.); (S.-y.B.); (K.-b.P.); (C.-k.L.)
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Nguyen PC, Nguyen MTT, Truong BT, Kim DR, Shin S, Kim JE, Park KB, Park JH, Tran PL, Ban SY, Kim J, Park JT. Isolation, Physicochemical Characterization, and Biological Properties of Inotodiol, the Potent Pharmaceutical Oxysterol from Chaga Mushroom. Antioxidants (Basel) 2023; 12:447. [PMID: 36830005 PMCID: PMC9952744 DOI: 10.3390/antiox12020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Inotodiol, an oxysterol found only in Chaga mushroom, has received attention from the pharmaceutical industry due to its strong antioxidant and anti-allergic activities. However, the production of inotodiol is still challenging, and its fundamental properties have yet to be investigated. This study aims to develop an efficient method to produce high-purity inotodiol from Chaga mushroom. Then, pure inotodiol was used to assess its physicochemical properties and biological activities. By optimizing the solvent used for extraction and purification, a new method to produce inotodiol was developed with high purity (>97%) and purification yield (33.6%). Inotodiol exhibited a melting point (192.06 °C) much higher than lanosterol and cholesterol. However, the solubility of inotodiol in organic solvents was notably lower than those of the other two sterols. The difference in the hydroxyl group at C-22 of inotodiol has shown the distinctive physicochemical properties of inotodiol compared with cholesterol and lanosterol. Based on those findings, a nonionic surfactant-based delivery system for inotodiol was developed to improve its bioavailability. The inotodiol microemulsion prepared with 1-2% Tween-80 exhibited homogenous droplets with an acceptable diameter (354 to 217 nm) and encapsulation efficiency (85.6-86.9%). The pharmacokinetic analysis of inotodiol microemulsion in oral administration of 4.5 mg/kg exhibited AUC0-24h = 341.81 (ng·h/mL), and Cmax = 88.05 (ng/mL). Notably, when the dose increased from 4.5 to 8.0 mg/kg, the bioavailability of inotodiol decreased from 41.32% to 33.28%. In a mouse model of sepsis, the serum level of interleukin-6 significantly decreased, and the rectal temperature of mice was recovered in the inotodiol emulsion group, indicating that inotodiol microemulsion is an effective oral delivery method. These results could provide valuable information for applying inotodiol in functional food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Phu Cuong Nguyen
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - My Tuyen Thi Nguyen
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Food Technology, Can Tho University, Can Tho 94000, Vietnam
| | - Ba Tai Truong
- Graduated School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dae-Ryeol Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sujin Shin
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ju-Eun Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Ji-Hyun Park
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Food Technology, An Giang University, Long Xuyen 880000, Vietnam
- Vietnam National University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - So-Young Ban
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Ding A, Quan L, Guo X, Wang H, Wen Y, Liu J, Zhang L, Zhang D, Lu P. Storage strategy for shale gas flowback water based on non-bactericide microorganism control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149187. [PMID: 34340077 DOI: 10.1016/j.scitotenv.2021.149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Shale gas is a promising unconventional natural gas in the world, however the produced flowback water have severe challenges to surrounding water resource. Conventional reuse technology uses bactericide to control corrosive microorganism, which might bring uncontrolled drug resistance and other secondary pollution. In this study, storage strategy of flowback water was designed as a pre-control stage to decline corrosive microorganism. Dissolved oxygen and temperature were chosen as two key parameters based on microbial physiological and biochemical characteristics. Results showed that under the cross effect of temperature and dissolved oxygen, 15 °C and anaerobic condition had the optimal microorganism control effectiveness. Microorganism amount and live/dead cell ratio decreased by 63.7% and 68.74% respectively compared raw water. COD removal efficiency reduced to only 20%, indicating that the microorganism activity was extremely inhibited. However, microorganism in flowback water was more sensitive to dissolved oxygen compared to temperature. Redundancy analysis confirmed that dissolved oxygen contribution was as high as 91.5% while temperature was not significant (p > 0.05), the contribution rate was only 8.5%. Thermococcus, Archaeoglobus, Thermovirga, Thermotoga and Moorella were the dominated thermophilic, anaerobic and sulfate reduction or metal corrosion microorganism in flowback water, so all these identified microorganisms were control targets. Importantly, all the target microorganisms detected in flowback water were declined after different storage strategies. This study provides an effective storage strategy for flowback water to inhibit the microbial amount and activity without biocides addition, which could help promote the green exploitation of shale gas.
Collapse
Affiliation(s)
- Aqiang Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Lin Quan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Xu Guo
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Haoqi Wang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Yiyi Wen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jun Liu
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Kim JH, Gao D, Cho CW, Hwang I, Kim HM, Kang JS. A Novel Bioanalytical Method for Determination of Inotodiol Isolated from Inonotus Obliquus and Its Application to Pharmacokinetic Study. PLANTS 2021; 10:plants10081631. [PMID: 34451676 PMCID: PMC8401913 DOI: 10.3390/plants10081631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
In this study, we developed a bioanalytical method using liquid chromatography coupled to triple quadrupole tandem mass spectrometry (LC-MS/MS) to apply to a pharmacokinetic study of inotodiol, which is known for its anti-cancer activity. Plasma samples were prepared with alkaline hydrolysis, liquid-liquid extraction, and solid-phase extraction. Inotodiol was detected in positive mode with atmospheric pressure chemical ionization by multiple-reaction monitoring mode using LC-MS/MS. The developed method was validated with linearity, accuracy, and precision. Accuracy ranged from 97.8% to 111.9%, and the coefficient of variation for precision was 1.8% to 4.4%. The developed method was applied for pharmacokinetic study, and the mean pharmacokinetic parameters administration were calculated as follows: λz 0.016 min-1; T1/2 49.35 min; Cmax 2582 ng/mL; Cl 0.004 ng/min; AUC0-t 109,500 ng×min/mL; MRT0-t 32.30 min; Vd 0.281 mL after intravenous administration at dose of 2 mg/kg and λz 0.005 min-1; T1/2 138.6 min; Tmax 40 min; Cmax 49.56 ng/mL; AUC0-t 6176 ng×in/mL; MRT0-t 103.7 min after oral administration. The absolute oral bioavailability of inotodiol was 0.45%, similar to nonpolar phytosterols. Collectively, this is the first bioanalytical method and pharmacokinetic study for inotodiol.
Collapse
|
5
|
Forouzanfar F, Asadpour E, Hosseinzadeh H, Boroushaki MT, Adab A, Dastpeiman SH, Sadeghnia HR. Safranal protects against ischemia-induced PC12 cell injury through inhibiting oxidative stress and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:707-716. [PMID: 33128592 DOI: 10.1007/s00210-020-01999-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Safranal, isolated from saffron (Crocus sativus L.), is known to possesses neuroprotective effects. In this study, the neuroprotective potential of safranal against PC12 cell injury triggered by ischemia/reperfusion was investigated. PC12 cells were pretreated with safranal at concentration ranges of 10-160 μM for 2 h and then deprived from oxygen-glucose-serum for 6 h, followed by reoxygenation for 24 h (OGD condition). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,7-dichlorofluorescin diacetate (DCF-DA), and comet assays were used to measure the extent of cellular viability, reactive oxygen substances (ROS), and DNA damage, respectively. Also, propidium iodide (PI) flow cytometry assay and western blotting of bax, bcl-2, and cleaved caspase-3 were performed for assessment of apoptosis. OGD exposure reduced the cell viability and increased intracellular ROS production, oxidative DNA damage, and apoptosis, in comparison with untreated control cells. Pretreatment with safranal (40 and 160 μM) significantly attenuated OGD-induced PC12 cell death, oxidative damage, and apoptosis. Furthermore, safranal markedly reduced the overexpression of bax/bcl-2 ratio and active caspase-3 following OGD (p < 0.05). The present findings indicated that safranal protects against OGD-induced neurotoxicity via modulating of oxidative and apoptotic responses.Graphical abstract The schematic representation of the mode of action of safranal against PC12 cells death induced by oxygen-glucose-serum deprivation and reoxygenation (OGD-R).
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Asadpour
- Anaestehsiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran
| | - Afrouz Adab
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran
| | - Seyedeh Hoda Dastpeiman
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran
| | - Hamid R Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran. .,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran. .,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran.
| |
Collapse
|
6
|
Habaike A, Yakufu M, Cong Y, Gahafu Y, Li Z, Abulizi P. Neuroprotective effects of Fomes officinalis Ames polysaccharides on Aβ 25-35-induced cytotoxicity in PC12 cells through suppression of mitochondria-mediated apoptotic pathway. Cytotechnology 2020; 72:539-549. [PMID: 32430659 DOI: 10.1007/s10616-020-00400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Aggregation of Aβ is a pathological hallmark of Alzheimer's disease (AD). The purpose of this study was to identify the protective roles of different polysaccharide components in Fomes officinalis Ames polysaccharides (FOAPs) against Aβ25-35-induced neurotoxicity in PC12 cells. Different doses of FOAPs components (i.e. FOAPs-a and FOAPs-b) were added to PC12 cells about 2 h before β-amyloid protein fragment 25-35 (Aβ25-35) exposure. The AD cellular model of PC12 cells was established using Aβ25-35. Then the PC12 cells were divided into 9 groups including: control group, Donepezil hydrochloride (DHCL) group, model group treated using 40 μM Aβ25-35, followed by FOAPs-a and FOAPs-b interference (50, 100 and 200 μg/mL). The mitochondrial reactive oxygen species (ROS), ATP, superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH) and mitochondrial membrane potential (MMP) were determined by commercial kits. The Cytochrome C, Bcl-2 and Bax expressions in the mitochondria and cytosol was determined by using Western blot analysis. FOAPs-a and FOAPs-b could significantly inhibit the LDH release, MDA level and the over accumulation of ROS induced by Aβ25-35 in PC12 cells in a dose-dependent manner. They could also effectively prevent Aβ25-35-stimulated cytotoxicity, which involved in attenuating cell apoptosis, increasing the ratio of Bcl-2/Bax and inhibiting Cytochrome C release from mitochondria to cytosol in PC12 cells. Moreover, FOAPs-a and FOAPs-b significantly alleviated mitochondrial dysfunction by regulating the MMP, as well as promoting the mitochondrial ATP synthesis. FOAPs-a and FOAPs-b played neuroprotective roles against Aβ25-35-induced cytotoxicity in PC12 cells through suppressing the mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Ayijiang Habaike
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Mirensha Yakufu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yuanyuan Cong
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yimin Gahafu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Zhen Li
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Palida Abulizi
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
7
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
8
|
Protective effects of hederagenic acid on PC12 cells against the OGD/R-induced apoptosis via activating Nrf2/ARE signaling pathway. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Zhang L, Wu T, Olatunji OJ, Tang J, Wei Y, Ouyang Z. N 6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae attenuates hydrogen peroxide induced oxidative toxicity in PC12 cells. Metab Brain Dis 2019; 34:1325-1334. [PMID: 31197679 DOI: 10.1007/s11011-019-00440-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
N6-(2-hydroxyethyl)-adenosine (HEA), is one of the active molecule found in Cordyceps cicadae. The protective effect of HEA against H2O2 induced oxidative damage in PC12 cells and the mechanism of action was investigated. The cells were exposed to varying concentrations of HEA (5-40 μM) for a period of 24 h and further incubated with 100 μM of H2O2 for an another 12 h. Cell viability, LDH release, MMP collapse, Ca2+ overload, antioxidant parameters (reactive oxygen species generation (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), inflammatory mediators (interleukins 6 and 1β (IL-6 and IL-1β), tumor necrosis factor alpha (TNF-α) and NF-kB were evaluated. The results obtained showed that cells exposed to H2O2 toxicity showed reduced cell viability, increased LDH, ROS and Ca2+ overload. However, prior treatment of PC12 cells with HEA increased cell viability, reduced LDH release, MMP collapse, Ca2+ overload and ROS generation induced by H2O2 toxicity. Furthermore, HEA also increased the activities of antioxidant enzymes and inhibited lipid peroxidation as well as reduced IL-6, IL-1β, TNF-α and NF-kB. Thus, our results provided insight into the attenuative effect of HEA against H2O2 induced cell death through its antioxidant action by reducing ROS generation, oxidative stress and protecting mitochondrial function.
Collapse
Affiliation(s)
- Leguo Zhang
- Department of Internal Neurology, Cangzhou Central Hospital, Cangzhou City, 061001, Hebei, China
| | - Tao Wu
- Department of Neurosurgery, Linyi Central Hospital, Linyi City, 276400, Shandong, China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90112, Thailand.
| | - Jian Tang
- School of Pharmacy, Jiangsu University, 301 Xuefu road, Zhenjiang, 202013, Jiangsu, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, 301 Xuefu road, Zhenjiang, 202013, Jiangsu, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, 301 Xuefu road, Zhenjiang, 202013, Jiangsu, China.
| |
Collapse
|
10
|
Zhang C, Wu Y, Li J, Yang GX, Su L, Huang Y, Wang R, Ma L. Synthesis and biological evaluation of 3-carbamate smilagenin derivatives as potential neuroprotective agents. Bioorg Med Chem Lett 2019; 29:126622. [PMID: 31444084 DOI: 10.1016/j.bmcl.2019.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Studies indicated that smilagenin, isolated from Anemarrhena asphodeloides Bunge, could improve cognitive impairment and exhibit neuroprotective activity. On the basis of the structure of smilagenin, a series of derivatives were synthesized and evaluated for their neuroprotective effects of H2O2-induced, oxygen glucose deprivation-induced neurotoxicity in SH-SY5Y cells and LPS-induced NO production in RAW264.7 cells. Structure activity relationship of derivatives revealed that benzyl-substituted piperazine formate derivatives showed the potent neuroprotective activity such as A12. These findings may provide new insights for the development of neuroprotective agents against Alzheimer's disease.
Collapse
Affiliation(s)
- Cong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lin Su
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
11
|
Li Y, Shi J, Sun X, Li Y, Duan Y, Yao H. Theaflavic acid from black tea protects PC12 cells against ROS-mediated mitochondrial apoptosis induced by OGD/R via activating Nrf2/ARE signaling pathway. J Nat Med 2019; 74:238-246. [PMID: 31227974 DOI: 10.1007/s11418-019-01333-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022]
Abstract
Cerebral ischemic stroke is a severe disease afflicting people worldwide. Phytochemicals play a pivotal role in the discovery of novel therapeutic approaches for the prevention of ischemic stroke. In our continual search for bioactive natural products for the treatment of ischemic stroke, we have evaluated the protective effects of theaflavic acid (TFA) from black tea using PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R), and investigated the possible mechanisms. The results showed that TFA can protect PC12 cells against OGD/R through increasing cell viability and decreasing intracellular lactate dehydrogenase (LDH) release. Further investigations found that TFA could inhibit the overproduction of intracellular reactive oxygen species (ROS), reduce malondialdehyde content, and elevate superoxide dismutase activity, which implied that TFA suppresses oxidative stress in PC12 cells induced by OGD/R. In addition, overload of intracellular calcium and collapse of the mitochondrial membrane potential were improved in the presence of TFA, and the activity of caspase-3 was significantly reduced by TFA. Western blot analysis showed that the expression of Bcl-2 was up-regulated while Bax was down-regulated. Therefore, it can be concluded that TFA can inhibit mitochondria-dependent apoptosis of PC12 cells induced by OGD/R. In addition, activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway was explored to elucidate the mechanism by which TFA inhibits ROS-mediated apoptosis in PC12 cells. The results revealed that TFA promoted the translocation of Nrf2 into nuclei, enhanced the transcriptional activity of ARE, and up-regulated expression of downstream HO-1, which indicates that the Nrf2/ARE signaling pathway is involved in the protection by TFA of PC12 cells injured by OGD/R.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jing Shi
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xinting Sun
- China Rehabilitation Center, Beijing Key Laboratory of Neural Injury and Rehabitilation, School of Rehabilitation Medicine, Capital Medical University, Beijing, 100077, China
| | - Yafeng Li
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Pharmacy, Fengxian People's Hospital, Xuzhou, 221700, Jiangsu, China
| | - Yinyin Duan
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huankai Yao
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
12
|
Duru KC, Kovaleva EG, Danilova IG, Bijl P. The pharmacological potential and possible molecular mechanisms of action ofInonotus obliquusfrom preclinical studies. Phytother Res 2019; 33:1966-1980. [DOI: 10.1002/ptr.6384] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Kingsley C. Duru
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
| | - Elena G. Kovaleva
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
| | - Irina G. Danilova
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
- Institute of Immunology and Physiology of the Ural BranchRussia Academy of Science Yekaterinburg Russia
| | - Pieter Bijl
- Department of Pharmacology, Faculty of Medicine and Health SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
13
|
Yao H, Zhang W, Wu H, Yang M, Wei P, Ma H, Duan J, Zhang C, Li Y. Sikokianin A from Wikstroemia indica protects PC12 cells against OGD/R-induced injury via inhibiting oxidative stress and activating Nrf2. Nat Prod Res 2018; 33:3450-3453. [PMID: 29806503 DOI: 10.1080/14786419.2018.1480019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemic cerebral stroke is a severe cause of human death and disability. Natural products play an important role in the discovery of novel therapy for cerebral ischemia. Herein, we investigate the neuroprotective effects of sikokianin A identifiedfrom Wikstroemia indica using PC12 cell exposed to OGD/R. The results revealed sikokianin A can improve the poor viability and release of intracellular LDH in PC12 cells induced by OGD/R. Further studies have demonstrated the increased ROS and MDA together with reduced SOD activity were attenuated by sikokianin A. Meanwhile, decreased mitochondrial membrane potential, activated Caspase-3, down-regulated Bcl-2 and up-regulated Bax were reversed. These results indicate the protective effects of sikokianin A are associated with inhibiting oxidative stress and apoptosis resulting from OGD/R. Additionally, sikokianin A can activate Nrf2 and downstream HO-1 in PC12 cells treated by OGD/R, which implied Nrf2/HO-1 signaling pathway was involved in the protective effects of sikokianin A.
Collapse
Affiliation(s)
- Huankai Yao
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Wenting Zhang
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Huiling Wu
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Ming Yang
- Physical Education College, Jilin Sport University , Changchun , China
| | - Pengxiang Wei
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island , Kingston , RI , USA
| | - Jingyu Duan
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Chunping Zhang
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Yan Li
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| |
Collapse
|