1
|
Wadström BN, Wulff AB, Pedersen KM, Nordestgaard BG. Small Remnants versus Large Triglyceride-Rich Lipoproteins in Risk of Atherosclerotic Cardiovascular Disease. Clin Chem 2025; 71:463-473. [PMID: 39882976 DOI: 10.1093/clinchem/hvae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Small remnants may penetrate the arterial intima more efficiently compared to large triglyceride-rich lipoproteins (TGRL). We tested the hypothesis that the importance of remnant cholesterol for the risk of atherosclerotic cardiovascular disease (ASCVD) may depend on the size of the remnants and TGRL carrying cholesterol. METHODS The cholesterol content of small remnants and large TGRL were measured in 25 572 individuals from the Copenhagen General Population Study (2003-2015) and in 222 721 individuals from the UK Biobank (2006-2010) using nuclear magnetic resonance spectroscopy. In the Copenhagen cohort during up to 15 years of follow-up and in the UK Biobank cohort during up to 16 years of follow-up, the numbers of individuals diagnosed with ASCVD (=myocardial infarction, ischemic stroke, and peripheral artery disease) in national health registries were 3869 and 11 424, respectively. RESULTS Compared to individuals with low cholesterol content in both small remnants and large TGRL (cutpoints were median cholesterol content), multivariable-adjusted hazard ratios for risk of ASCVD were 1.21 (95% confidence interval: 1.07-1.37) for individuals with high cholesterol content in small remnants only and 0.94 (0.83-1.07) for individuals with high cholesterol content in large TGRL only; the multivariable-adjusted hazard ratio for risk of ASCVD per 10 percentile-units higher cholesterol content in small remnants vs that in large TGRL was 1.04 (1.01-1.07). In the UK Biobank cohort, corresponding hazard ratios were 1.11 (1.03-1.20), 1.01 (0.93-1.09), and 1.05 (1.04-1.07), respectively. CONCLUSION The importance of remnant cholesterol for the risk of ASCVD may depend on the size of the TGRL and remnants carrying cholesterol.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Tramontano D, D'Erasmo L, Larouche M, Brisson D, Lauzière A, Di Costanzo A, Bini S, Minicocci I, Covino S, Baratta F, Pasquali M, Cerbelli B, Gaudet D, Arca M. The vicious circle of chronic kidney disease and hypertriglyceridemia: What is first, the hen or the egg? Atherosclerosis 2025; 403:119146. [PMID: 40056689 DOI: 10.1016/j.atherosclerosis.2025.119146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025]
Abstract
Chronic kidney disease (CKD) is documented to cause alterations in lipid metabolism, and this was considered a potent driver of increased cardiovascular risk. Among the diverse alteration of lipid traits in CKD, research endeavours have predominantly concentrated on low-density lipoproteins (LDL) in view of the potent pro-atherogenic role of these lipoprotein particles and the demonstration of protective cardiovascular effect of reducing LDL. However, few studies have focused on the metabolism of triglyceride-rich lipoproteins and even fewer on their role in causing kidney damage. Therefore, the comprehensive description of the impact of hypertriglyceridemia (HTG) in CKD pathophysiology remains largely undetermined. This reflects the difficulty of disentangling the independent role of triglycerides (TG) in the complex, bidirectional relationship between TG and kidney disease. Abnormal neutral lipid accumulation in the intrarenal vasculature and renal cells eventually due to HTG may also promote glomerular injury, throughout mechanisms including oxidative stress, mitochondrial dysfunction and proinflammatory responses. While epidemiological and experimental evidence suggests a potential role of TG in kidney damage, the causal mechanisms and their clinical relevance remain unclear, representing a significant area for future investigation. This review aims to highlight the intricate interplay between TG metabolism and kidney disease, shedding light on the mechanisms through which HTG may influence kidney functionality.
Collapse
Affiliation(s)
- Daniele Tramontano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy.
| | - Miriam Larouche
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Diane Brisson
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Alex Lauzière
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Stella Covino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| | - Francesco Baratta
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Pasquali
- Department of Internal Medicine and Medical Specialities, Nephrology Unit, University Policlinico Umberto I Hospital, Rome, Italy
| | - Bruna Cerbelli
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell' Università 37, 00161, Rome, Italy
| |
Collapse
|
3
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2025; 55:e14326. [PMID: 39370572 PMCID: PMC11628670 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Raul D. Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor)University of Sao Paulo Medical School HospitalSao PauloBrazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Stefano Carugo
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
4
|
Schonck WAM, Reijman MD, Wiegman A, Ibrahim S, Corpeleijn WE, Planken RN, Hovingh GK, Stroes ESG, Nurmohamed NS, Reeskamp LF. Decreased LDL-Cholesterol Exposure Following ANGPTL3 Inhibition Reduces Coronary Plaque Development in Homozygous Familial Hypercholesterolemia. JACC Cardiovasc Imaging 2024; 17:1258-1260. [PMID: 38864785 DOI: 10.1016/j.jcmg.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
|
5
|
Jamadade P, Nupur N, Maharana KC, Singh S. Therapeutic Monoclonal Antibodies for Metabolic Disorders: Major Advancements and Future Perspectives. Curr Atheroscler Rep 2024; 26:549-571. [PMID: 39008202 DOI: 10.1007/s11883-024-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW Globally, the prevalence of metabolic disorders is rising. Elevated low-density lipoprotein (LDL) cholesterol is a hallmark of familial hypercholesterolemia, one of the most prevalent hereditary metabolic disorders and another one is Diabetes mellitus (DM) that is more common globally, characterised by hyperglycemia with low insulin-directed glucose by target cells. It is still known that low-density lipoprotein cholesterol (LDL-C) increases the risk of cardiovascular disease (CVD). LDL-C levels are thought to be the main therapeutic objectives. RECENT FINDINGS The primary therapy for individuals with elevated cholesterol levels is the use of statins and other lipid lowering drugs like ezetimibe for hypercholesterolemia. Even after taking statin medication to the maximum extent possible, some individuals still have a sizable residual cardiovascular risk. To overcome this proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors-monoclonal antibodies (mAbs) are a novel class of systemic macromolecules that have enhanced LDL-C-lowering efficacy. Along with this other inhibitor are used like Angiopoeitin like 3 inhibitors. Research on both humans and animals has shown that anti-CD3 antibodies can correct autoimmune disorders like diabetes mellitus. Individuals diagnosed with familial hypercholesterolemia (FH) may need additional treatment options beyond statins, especially when facing challenges such as statin tolerance or the inability of even the highest statin doses to reach the desired target cholesterol level. Here is the summary of PCSK9, ANGPTL-3 and CD3 inhibitors and their detailed information. In this review we discuss the details of PCSK9, ANGPTL-3 and CD3 inhibitors and the current therapeutic interventions of using the monoclonal antibodies in case of the metabolic disorder. We further present the present studies and the future prospective of the same.
Collapse
Affiliation(s)
- Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Vaishali, Hajipur, 844102, Bihar, India
| | - Neh Nupur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Vaishali, Hajipur, 844102, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Vaishali, Hajipur, 844102, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Vaishali, Hajipur, 844102, Bihar, India.
| |
Collapse
|
6
|
Dingman R, Bihorel S, Gusarova V, Mendell J, Pordy R. Evinacumab: Mechanism of action, clinical, and translational science. Clin Transl Sci 2024; 17:e13836. [PMID: 38845393 PMCID: PMC11157145 DOI: 10.1111/cts.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare and serious genetic condition characterized by premature cardiovascular disease due to severely elevated low-density lipoprotein cholesterol (LDL-C). HoFH primarily results from loss-of-function (LOF) mutations in the LDL receptor (LDLR), reducing LDL-C clearance such that patients experience severe hypercholesterolemia, exacerbating the risk of developing cardiovascular events. Treatment options such as statins, lomitapide, ezetimibe, proprotein convertase subtilisin/kexin type 9 inhibitors, and apheresis help lower LDL-C; however, many patients with HoFH still fail to reach their target LDL-C levels and many of these lipid-lowering therapies are not indicated for pediatric use. Angiopoietin-like protein 3 (ANGPTL3) has been identified as a target to treat elevated LDL-C by acting as a natural inhibitor of lipoprotein lipase (LPL) and endothelial lipase (EL), enzymes involved in the hydrolysis of the triglyceride and phospholipid content of very low-density lipoproteins. Persons heterozygous for LOF mutations in ANGPTL3 were reported to have lower LDL-C than non-carriers and lower risk of coronary artery disease. Evinacumab is a first-in-class human monoclonal antibody that specifically binds to ANGPTL3 to prevent its inhibition of LPL and EL. In clinical trials, a 15 mg/kg intravenous dose every 4 weeks has shown a mean percent change from baseline in LDL-C of ~50% in adult, adolescent, and pediatric patients with HoFH. This mini review article describes the mechanism of action of evinacumab, evinacumab population PK and PD modeling, and clinical development history of evinacumab for the treatment of HoFH.
Collapse
Affiliation(s)
| | | | | | | | - Robert Pordy
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| |
Collapse
|
7
|
Alonso R, Arroyo-Olivares R, Díaz-Díaz JL, Fuentes-Jiménez F, Arrieta F, de Andrés R, Gonzalez-Bustos P, Argueso R, Martin-Ordiales M, Martinez-Faedo C, Illán F, Saenz P, Donate JM, Sanchez Muñoz-Torrero JF, Martinez-Hervas S, Mata P. Improved lipid-lowering treatment and reduction in cardiovascular disease burden in homozygous familial hypercholesterolemia: The SAFEHEART follow-up study. Atherosclerosis 2024; 393:117516. [PMID: 38523000 DOI: 10.1016/j.atherosclerosis.2024.117516] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
AIM We aimed to describe clinical and genetic characteristics, lipid-lowering treatment and atherosclerotic cardiovascular disease (ASCVD) outcomes over a long-term follow-up in homozygous familial hypercholesterolemia (HoFH). METHODS SAFEHEART (Spanish Familial Hypercholesterolaemia Cohort Study) is a long-term study in molecularly diagnosed FH. Data analyzed in HoFH were prospectively obtained from 2004 until 2022. ASCVD events, lipid profile and lipid-lowering treatment were determined. RESULTS Thirty-nine HoFH patients were analyzed. The mean age was 42 ± 20 years and nineteen (49%) were women. Median follow-up was 11 years (IQR 6,18). Median age at genetic diagnosis was 24 years (IQR 8,42). At enrolment, 33% had ASCVD and 18% had aortic valve disease. Patients with new ASCVD events and aortic valve disease at follow-up were six (15%), and one (3%), respectively. Median untreated LDL-C levels were 555 mg/dL (IQ 413,800), and median LDL-C levels at last follow-up was 122 mg/dL (IQR 91,172). Most patients (92%) were on high intensity statins and ezetimibe, 28% with PCSK9i, 26% with lomitapide, and 23% with lipoprotein-apheresis. Fourteen patients (36%) attained an LDL-C level below 100 mg/dL, and 10% attained an LDL-C below 70 mg/dL in secondary prevention. Patients with null/null variants were youngers, had higher untreated LDL-C and had the first ASCVD event earlier. Free-event survival is longer in patients with defective variant compared with those patients with at least one null variant (p=0.02). CONCLUSIONS HoFH is a severe life threating disease with a high genetic and phenotypic variability. The improvement in lipid-lowering treatment and LDL-C levels have contributed to reduce ASCVD events.
Collapse
Affiliation(s)
- Rodrigo Alonso
- Fundación Hipercolesterolemia Familiar, Madrid, Spain; Center for Advanced Metabolic Medicine and Nutrition, Santiago, Chile.
| | | | | | - Francisco Fuentes-Jiménez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, CIBERObn, Córdoba, Spain
| | | | | | - Pablo Gonzalez-Bustos
- Department of Internal Medicine, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Rosa Argueso
- Department of Endocrinology, Hospital Universitario de Lugo, Lugo, Spain
| | | | | | - Fátima Illán
- Department of Endocrinology, Hospital Morales Meseguer, Murcia, Spain
| | - Pedro Saenz
- Department of Internal Medicine, Hospital de Mérida, Mérida, Spain
| | - José María Donate
- Department of Pediatric Endocrinology, Hospital General Universitario Santa Lucía, Murcia, Spain
| | | | - Sergio Martinez-Hervas
- Department of Endocrinology, Hospital Clínico Universitario de Valencia INCLIVA, CIBER de Diabetes, Spain
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain.
| |
Collapse
|
8
|
Agnello F, Ingala S, Laterra G, Scalia L, Barbanti M. Novel and Emerging LDL-C Lowering Strategies: A New Era of Dyslipidemia Management. J Clin Med 2024; 13:1251. [PMID: 38592091 PMCID: PMC10931739 DOI: 10.3390/jcm13051251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) represents a major global health challenge, significantly contributing to mortality rates. This chronic inflammatory condition affecting blood vessels is intricately linked to hypercholesterolemia, with elevated levels of low-density lipoprotein cholesterol (LDL-C) recognized as a central and modifiable risk factor. The effectiveness of lipid-lowering therapy (LLT) in mitigating ASCVD risk is well established, with studies revealing a substantial reduction in major ischemic events correlating with LDL-C reduction. While statins, often combined with ezetimibe, remain fundamental in dyslipidemia management, a significant proportion of patients on statin therapy continue to experience cardiovascular events. Recent pharmacological advancements, driven by a deeper understanding of atherogenesis, have unveiled novel therapeutic targets and potent drugs. Notably, agents like bempedoic acid and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (evolocumab, alirocumab, inclisiran) have emerged as effective options to intensify LLT and achieve LDL-C goals, addressing limitations associated with statins, such as myopathy. Molecular insights into alternative pathways have spurred the investigation of emerging agents, offering promising perspectives for novel medications with efficacy comparable to established treatments, associated with advantages in cost and administration. This review provides a comprehensive overview of the evolving landscape of lipid-lowering strategies, highlighting the progress made in addressing ASCVD risk and the potential of upcoming therapies to further optimize cardiovascular prevention.
Collapse
Affiliation(s)
- Federica Agnello
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
| | - Salvatore Ingala
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
| | - Giulia Laterra
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
| | - Lorenzo Scalia
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
| | - Marco Barbanti
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
- Faculty of Medicine and Surgery, Università degli Studi di Enna “Kore”, 94100 Enna, Italy
| |
Collapse
|