1
|
Bollen Pinto B, Ackland GL. Pathophysiological mechanisms underlying increased circulating cardiac troponin in noncardiac surgery: a narrative review. Br J Anaesth 2024; 132:653-666. [PMID: 38262855 DOI: 10.1016/j.bja.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Assay-specific increases in circulating cardiac troponin are observed in 20-40% of patients after noncardiac surgery, depending on patient age, type of surgery, and comorbidities. Increased cardiac troponin is consistently associated with excess morbidity and mortality after noncardiac surgery. Despite these findings, the underlying mechanisms are unclear. The majority of interventional trials have been designed on the premise that ischaemic cardiac disease drives elevated perioperative cardiac troponin concentrations. We consider data showing that elevated circulating cardiac troponin after surgery could be a nonspecific marker of cardiomyocyte stress. Elevated concentrations of circulating cardiac troponin could reflect coordinated pathological processes underpinning organ injury that are not necessarily caused by ischaemia. Laboratory studies suggest that matching of coronary artery autoregulation and myocardial perfusion-contraction coupling limit the impact of systemic haemodynamic changes in the myocardium, and that type 2 ischaemia might not be the likeliest explanation for cardiac troponin elevation in noncardiac surgery. The perioperative period triggers multiple pathological mechanisms that might cause cardiac troponin to cross the sarcolemma. A two-hit model involving two or more triggers including systemic inflammation, haemodynamic strain, adrenergic stress, and autonomic dysfunction might exacerbate or initiate acute myocardial injury directly in the absence of cell death. Consideration of these diverse mechanisms is pivotal for the design and interpretation of interventional perioperative trials.
Collapse
Affiliation(s)
- Bernardo Bollen Pinto
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Zheng M, Chen S, Zeng Z, Cai H, Zhang H, Yu X, Wang W, Li X, Li CZ, He B, Deng KQ, Lu Z. Targeted ablation of the left middle cervical ganglion prevents ventricular arrhythmias and cardiac injury induced by AMI. Basic Res Cardiol 2024; 119:57-74. [PMID: 38151579 DOI: 10.1007/s00395-023-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Siyu Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ziyue Zeng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Hanyu Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaomei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weina Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xianqing Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chen-Ze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Bo He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China.
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China.
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Qin D, Jia XF, Hanna A, Lee J, Pekson R, Elrod JW, Calvert JW, Frangogiannis NG, Kitsis RN. BAK contributes critically to necrosis and infarct generation during reperfused myocardial infarction. J Mol Cell Cardiol 2023; 184:1-12. [PMID: 37709008 PMCID: PMC10841630 DOI: 10.1016/j.yjmcc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
At least seven cell death programs are activated during myocardial infarction (MI), but which are most important in causing heart damage is not understood. Two of these programs are mitochondrial-dependent necrosis and apoptosis. The canonical function of the pro-cell death BCL-2 family proteins BAX and BAK is to mediate permeabilization of the outer mitochondrial membrane during apoptosis allowing apoptogen release. BAX has also been shown to sensitize cells to mitochondrial-dependent necrosis, although the underlying mechanisms remain ill-defined. Genetic deletion of Bax or both Bax and Bak in mice reduces infarct size following reperfused myocardial infarction (MI/R), but the contribution of BAK itself to cardiomyocyte apoptosis and necrosis and infarction has not been investigated. In this study, we use Bak-deficient mice and isolated adult cardiomyocytes to delineate the role of BAK in the pathogenesis of infarct generation and post-infarct remodeling during MI/R and non-reperfused MI. Generalized homozygous deletion of Bak reduced infarct size ∼50% in MI/R in vivo, which was attributable primarily to decreases in necrosis. Protection from necrosis was also observed in BAK-deficient isolated cardiomyocytes suggesting that the cardioprotection from BAK loss in vivo is at least partially cardiomyocyte-autonomous. Interestingly, heterozygous Bak deletion, in which the heart still retains ∼28% of wild type BAK levels, reduced infarct size to a similar extent as complete BAK absence. In contrast to MI/R, homozygous Bak deletion did not attenuate acute infarct size or long-term scar size, post-infarct remodeling, cardiac dysfunction, or mortality in non-reperfused MI. We conclude that BAK contributes significantly to cardiomyocyte necrosis and infarct generation during MI/R, while its absence does not appear to impact the pathogenesis of non-reperfused MI. These observations suggest BAK may be a therapeutic target for MI/R and that even partial pharmacological antagonism may provide benefit.
Collapse
Affiliation(s)
- Dongze Qin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Xiaotong F Jia
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Anis Hanna
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jaehoon Lee
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ryan Pekson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - John W Elrod
- Department of Cardiovascular Sciences and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States of America
| | - John W Calvert
- Department of Surgery Emory University School of Medicine, Atlanta, GA, United States of America
| | - Nikolaos G Frangogiannis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
4
|
Heuts S, Gollmann-Tepeköylü C, Denessen EJS, Olsthoorn JR, Romeo JLR, Maessen JG, van ‘t Hof AWJ, Bekers O, Hammarsten O, Pölzl L, Holfeld J, Bonaros N, van der Horst ICC, Davidson SM, Thielmann M, Mingels AMA. Cardiac troponin release following coronary artery bypass grafting: mechanisms and clinical implications. Eur Heart J 2023; 44:100-112. [PMID: 36337034 PMCID: PMC9897191 DOI: 10.1093/eurheartj/ehac604] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
The use of biomarkers is undisputed in the diagnosis of primary myocardial infarction (MI), but their value for identifying MI is less well studied in the postoperative phase following coronary artery bypass grafting (CABG). To identify patients with periprocedural MI (PMI), several conflicting definitions of PMI have been proposed, relying either on cardiac troponin (cTn) or the MB isoenzyme of creatine kinase, with or without supporting evidence of ischaemia. However, CABG inherently induces the release of cardiac biomarkers, as reflected by significant cTn concentrations in patients with uncomplicated postoperative courses. Still, the underlying (patho)physiological release mechanisms of cTn are incompletely understood, complicating adequate interpretation of postoperative increases in cTn concentrations. Therefore, the aim of the current review is to present these potential underlying mechanisms of cTn release in general, and following CABG in particular (Graphical Abstract). Based on these mechanisms, dissimilarities in the release of cTnI and cTnT are discussed, with potentially important implications for clinical practice. Consequently, currently proposed cTn biomarker cut-offs by the prevailing definitions of PMI might warrant re-assessment, with differentiation in cut-offs for the separate available assays and surgical strategies. To resolve these issues, future prospective studies are warranted to determine the prognostic influence of biomarker release in general and PMI in particular.
Collapse
Affiliation(s)
- Samuel Heuts
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | - Ellen J S Denessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jules R Olsthoorn
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229HX Maastricht, The Netherlands
- Department of Cardiothoracic Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Jamie L R Romeo
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229HX Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Arnoud W J van ‘t Hof
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Otto Bekers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ola Hammarsten
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Iwan C C van der Horst
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University Duisburg-Essen, Essen, Germany
| | - Alma M A Mingels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
5
|
Ponath AS, Volz DR, Suyenaga ES, Ziulkoski AL, Perassolo MS. Assessment of potential in vitro toxicity of Cissus sicyoides L. and Wedelia paludosa DC. leaves water extracts. Toxicol Res (Camb) 2022; 11:881-890. [PMID: 36337247 PMCID: PMC9623571 DOI: 10.1093/toxres/tfac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 10/05/2023] Open
Abstract
Medicinal plants have been employed as an alternative method to treat diabetes. One is Cissus sicyoides, a plant from the Amazon region (Northern Brazil), which is morphologically similar to Wedelia paludosa, a plant easily found in Southern Brazil. Thus, this study aimed to assess the potential toxicity of C. sicyoides and W. paludosa's leaves water extracts. Through phytochemical screening, phenolic compounds and alkaloids were observed in both species and coumarins only W. paludosa's aqueous extract. Phenolic compounds were quantified in both extracts and C. sicyoides presented 1.36 ± 0.04 mg/pyrogalic acid equivalent (PAE), whereas W. paludosa presented 3.27 ± 0.07 mg/PAE. Total antioxidant power was measured by the ferric reduction assay. Cissus sicyoides exhibited total antioxidant activity of 748.0 ± 104.5 μM and W. paludosa, 1971.5 ± 141.0 μM. Cissus sicyoides showed an inhibition rate for the alpha-glucosidases enzyme assay of 55.2 ± 1.7% and W. paludosa, 85.8 ± 9.7%. The formation of reactive oxygen species was evaluated by the DCFH-DA method, its formation being higher in W. paludosa's water extracts than in C. sicyoides. Cell viability was evaluated by the Sulforhodamine B and MTT assays. Wedelia paludosa's extracts' exposure presented a cell viability close to positive control starting from 2 mg/mL to 30 mg/mL, whereas C. sicyoides demonstrated statistical significant low viability at the highest concentration when compared with the negative control. Moreover, cell death mechanism was investigated, having W. paludosa's extract indicated death by necrosis. The results suggest low toxicity for C. sicyoides' extract and high toxicity for W. paludosa's extract.
Collapse
Affiliation(s)
- Amanda Schu Ponath
- Master degree in Toxicology and Toxicological Analysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Débora Rech Volz
- Cytotoxicity Laboratory, Institute of Helth Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Edna Sayuri Suyenaga
- Master degree in Toxicology and Toxicological Analysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
- Department of Pharmacy, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Ana Luíza Ziulkoski
- Master degree in Toxicology and Toxicological Analysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
- Cytotoxicity Laboratory, Institute of Helth Sciences, Feevale University, Novo Hamburgo, Brazil
- Department of Pharmacy, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Magda Susana Perassolo
- Master degree in Toxicology and Toxicological Analysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
- Department of Pharmacy, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| |
Collapse
|
6
|
Owen A, Patel JM, Parekh D, Bangash MN. Mechanisms of Post-critical Illness Cardiovascular Disease. Front Cardiovasc Med 2022; 9:854421. [PMID: 35911546 PMCID: PMC9334745 DOI: 10.3389/fcvm.2022.854421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS, and complications of major surgery. Although patients leave critical care following homeostatic recovery, significant additional diseases affect these patients during and beyond the convalescent phase. New cardiovascular and renal disease is commonly seen and roughly one third of all deaths in the year following discharge from critical care may come from this cluster of diseases. During prolonged critical care stays, the immunometabolic, inflammatory and neurohumoral response to severe illness in conjunction with resuscitative treatments primes the immune system and parenchymal tissues to develop a long-lived pro-inflammatory and immunosenescent state. This state is perpetuated by persistent Toll-like receptor signaling, free radical mediated isolevuglandin protein adduct formation and presentation by antigen presenting cells, abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic reprogramming of the innate immune arm (trained immunity), and the development of immunosenescence through T-cell exhaustion/anergy through epigenetic modification of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling and dysfunction, and proteinuria and accelerated chronic kidney disease.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jaimin M. Patel
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mansoor N. Bangash
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Mansoor N. Bangash
| |
Collapse
|
7
|
Canty JM. Myocardial Injury, Troponin Release and Cardiomyocyte Death in Brief Ischemia, Failure and Ventricular Remodeling. Am J Physiol Heart Circ Physiol 2022; 323:H1-H15. [PMID: 35559722 DOI: 10.1152/ajpheart.00093.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Troponin released from irreversibly injured myocytes is the gold standard biomarker for the rapid identification of an acute coronary syndrome. In acute myocardial infarction, necrotic cell death is characterized by sarcolemmal disruption in response to a critical level of energy depletion after more than 15-minutes of ischemia. While troponin I and T are highly specific for cardiomyocyte death, high-sensitivity assays have demonstrated that measurable circulating levels of troponin are present in the majority of normal subjects. In addition, transient as well as chronic elevations have been demonstrated in many disease states not clearly associated with myocardial ischemia. The latter observations have given rise to the clinical concept of myocardial injury. This review will summarize evidence supporting the notion that circulating troponin levels parallel the extent of myocyte apoptosis in normal ventricular remodeling and in pathophysiological conditions not associated with infarction or necrosis. It will review the evidence that myocyte apoptosis can be accelerated by both diastolic strain from elevated ventricular preload as well as systolic strain from dyskinesis after brief episodes of ischemia too short to cause a critical level of myocyte energy depletion. We then show how chronic, low rates of myocyte apoptosis from endogenous myocyte turnover, repetitive ischemia or repetitive elevations in LV diastolic pressure can lead to significant myocyte loss in the absence of neurohormonal stimulation. Finally, we posit that the differential response to strain-induced injury in heart failure may determine whether progressive myocyte loss and HFrEF or interstitial fibrosis and HFpEF become the heart failure phenotype.
Collapse
Affiliation(s)
- John M Canty
- VA WNY Health Care System, the Departments of Medicine, Physiology & Biophysics, Biomedical Engineering and The Clinical and Translational Research Center of the University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Alfarouk KO, Alhoufie STS, Hifny A, Schwartz L, Alqahtani AS, Ahmed SBM, Alqahtani AM, Alqahtani SS, Muddathir AK, Ali H, Bashir AHH, Ibrahim ME, Greco MR, Cardone RA, Harguindey S, Reshkin SJ. Of mitochondrion and COVID-19. J Enzyme Inhib Med Chem 2021; 36:1258-1267. [PMID: 34107824 PMCID: PMC8205080 DOI: 10.1080/14756366.2021.1937144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
COVID-19, a pandemic disease caused by a viral infection, is associated with a high mortality rate. Most of the signs and symptoms, e.g. cytokine storm, electrolytes imbalances, thromboembolism, etc., are related to mitochondrial dysfunction. Therefore, targeting mitochondrion will represent a more rational treatment of COVID-19. The current work outlines how COVID-19's signs and symptoms are related to the mitochondrion. Proper understanding of the underlying causes might enhance the opportunity to treat COVID-19.
Collapse
Affiliation(s)
- Khalid Omer Alfarouk
- Research Center, Zamzam University College, Khartoum, Sudan
- Department of Evolutionary Pharmacology and Tumor Metabolism, Hala Alfarouk Cancer Center, Khartoum, Sudan
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Sari T. S. Alhoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | | | | | - Ali S. Alqahtani
- College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saad S. Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Heyam Ali
- Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Adil H. H. Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
9
|
Chotalia M, Ali M, Alderman JE, Kalla M, Parekh D, Bangash MN, Patel JM. Right Ventricular Dysfunction and Its Association With Mortality in Coronavirus Disease 2019 Acute Respiratory Distress Syndrome. Crit Care Med 2021; 49:1757-1768. [PMID: 34224453 PMCID: PMC8439642 DOI: 10.1097/ccm.0000000000005167] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess whether right ventricular dilation or systolic impairment is associated with mortality and/or disease severity in invasively ventilated patients with coronavirus disease 2019 acute respiratory distress syndrome. DESIGN Retrospective cohort study. SETTING Single-center U.K. ICU. PATIENTS Patients with coronavirus disease 2019 acute respiratory distress syndrome undergoing invasive mechanical ventilation that received a transthoracic echocardiogram between March and December 2020. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS Right ventricular dilation was defined as right ventricular:left ventricular end-diastolic area greater than 0.6, right ventricular systolic impairment as fractional area change less than 35%, or tricuspid annular plane systolic excursion less than 17 mm. One hundred seventy-two patients were included, 59 years old (interquartile range, 49-67), with mostly moderate acute respiratory distress syndrome (n = 101; 59%). Ninety-day mortality was 41% (n = 70): 49% in patients with right ventricular dilation, 53% in right ventricular systolic impairment, and 72% in right ventricular dilation with systolic impairment. The right ventricular dilation with systolic impairment phenotype was independently associated with mortality (odds ratio, 3.11 [95% CI, 1.15-7.60]), but either disease state alone was not. Right ventricular fractional area change correlated with Pao2:Fio2 ratio, Paco2, chest radiograph opacification, and dynamic compliance, whereas right ventricular:left ventricle end-diastolic area correlated negatively with urine output. CONCLUSIONS Right ventricular systolic impairment correlated with pulmonary pathophysiology, whereas right ventricular dilation correlated with renal dysfunction. Right ventricular dilation with systolic impairment was the only right ventricular phenotype that was independently associated with mortality.
Collapse
Affiliation(s)
- Minesh Chotalia
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Muzzammil Ali
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Joseph E Alderman
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Manish Kalla
- Department of Cardiology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Mansoor N Bangash
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jaimin M Patel
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Implications of the complex biology and micro-environment of cardiac sarcomeres in the use of high affinity troponin antibodies as serum biomarkers for cardiac disorders. J Mol Cell Cardiol 2020; 143:145-158. [PMID: 32442660 PMCID: PMC7235571 DOI: 10.1016/j.yjmcc.2020.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiac troponin I (cTnI), the inhibitory-unit, and cardiac troponin T (cTnT), the tropomyosin-binding unit together with the Ca-binding unit (cTnC) of the hetero-trimeric troponin complex signal activation of the sarcomeres of the adult cardiac myocyte. The unique structure and heart myocyte restricted expression of cTnI and cTnT led to their worldwide use as biomarkers for acute myocardial infarction (AMI) beginning more than 30 years ago. Over these years, high sensitivity antibodies (hs-cTnI and hs-cTnT) have been developed. Together with careful determination of history, physical examination, and EKG, determination of serum levels using hs-cTnI and hs-cTnT permits risk stratification of patients presenting in the Emergency Department (ED) with chest pain. With the ability to determine serum levels of these troponins with high sensitivity came the question of whether such measurements may be of diagnostic and prognostic value in conditions beyond AMI. Moreover, the finding of elevated serum troponins in physiological states such as exercise and pathological states where cardiac myocytes may be affected requires understanding of how troponins may be released into the blood and whether such release may be benign. We consider these questions by relating membrane stability to the complex biology of troponin with emphasis on its sensitivity to the chemo-mechanical and micro-environment of the cardiac myocyte. We also consider the role determinations of serum troponins play in the precise phenotyping in personalized and precision medicine approaches to promote cardiac health. Serum levels of cardiac TnI and cardiac TnT permit stratification of patients with chest pain. Release of troponins into blood involves not only frank necrosis but also programmed necroptosis. Genome wide analysis of serum troponin levels in the general population may be prognostic about cardiovascular health. Significant levels of serum troponins with exhaustive exercise may not be benign. Troponin in serum can lead to important data related to personalized and precision medicine.
Collapse
|
11
|
Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev 2019; 99:1765-1817. [PMID: 31364924 DOI: 10.1152/physrev.00022.2018] [Citation(s) in RCA: 661] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.
Collapse
Affiliation(s)
- Dominic P Del Re
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Dulguun Amgalan
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Andreas Linkermann
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Qinghang Liu
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Weil BR, Suzuki G, Young RF, Iyer V, Canty JM. Troponin Release and Reversible Left Ventricular Dysfunction After Transient Pressure Overload. J Am Coll Cardiol 2019; 71:2906-2916. [PMID: 29929614 DOI: 10.1016/j.jacc.2018.04.029] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The authors previously demonstrated that brief ischemia elicits cardiac troponin I (cTnI) release and myocyte apoptosis in the absence of necrosis. It remains uncertain whether other pathophysiological stresses can produce apoptosis and transient cTnI release without ischemia. OBJECTIVES This study sought to determine whether a transient increase in left ventricular (LV) preload elicits cTnI release in the absence of ischemia. METHODS Propofol-anesthetized swine (N = 13) received intravenous phenylephrine (PE) (300 μg/min) for 1 h to increase left ventricular end-diastolic pressure (LVEDP) to ∼30 mm Hg. Serial cTnI and echocardiographic function were assessed for 24 h, and myocardial tissue was analyzed for apoptosis and necrosis. RESULTS PE infusion increased systolic blood pressure from 137 ± 14 mm Hg to 192 ± 11 mm Hg (mean ± SD; p < 0.001) and increased LVEDP from 17 ± 2 mm Hg to 30 ± 5 mm Hg (p < 0.001). Myocardial flow measurements demonstrated no evidence of ischemia. Hemodynamics normalized rapidly after PE, but LV ejection fraction remained depressed (32 ± 21% vs. 58 ± 7%; p < 0.01) with normalization after 24 h (51 ± 16%; p = 0.31). Baseline transcoronary cTnI release was low (16 ± 20 ng/l) but increased to 856 ± 956 ng/l (p = 0.01) 1 h after LVEDP elevation. Circulating cTnI rose above the 99th percentile within 30 min and remained elevated at 24 h (1,462 ± 1,691 ng/l). Pathological analysis demonstrated myocyte apoptosis at 3 h (31.3 ± 11.9 myocytes/cm2 vs. 4.6 ± 3.7 myocytes/cm2; p < 0.01), that normalized after 24 h (6.2 ± 5.6 myocytes/cm2; p = 0.46) without histological necrosis. CONCLUSIONS Transient elevations of LVEDP lead to cTnI release, apoptosis, and reversible stretch-induced stunning in the absence of ischemia. Thus, preload-induced myocyte injury may explain many cTnI elevations seen in the absence of clinical signs or symptoms of myocardial ischemia.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York; Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York.
| | - Gen Suzuki
- Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York; Department of Medicine, Division of Cardiovascular Medicine, University at Buffalo, Buffalo, New York
| | - Rebeccah F Young
- Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York; Department of Medicine, Division of Cardiovascular Medicine, University at Buffalo, Buffalo, New York
| | - Vijay Iyer
- Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York; Department of Medicine, Division of Cardiovascular Medicine, University at Buffalo, Buffalo, New York
| | - John M Canty
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York; Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York; Department of Medicine, Division of Cardiovascular Medicine, University at Buffalo, Buffalo, New York; Department of Biomedical Engineering, University at Buffalo, Buffalo, New York; VA WNY Health Care System, Buffalo, New York
| |
Collapse
|
13
|
Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res 2017; 113:1708-1718. [PMID: 29016754 PMCID: PMC5852618 DOI: 10.1093/cvr/cvx183] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/05/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
Elucidation of the physiologically distinct subunits of troponin in 1973 greatly facilitated our understanding of cardiac contraction. Although troponins are expressed in both skeletal and cardiac muscle, there are isoforms of troponin I/T expressed selectively in the heart. By exploiting cardiac-restricted epitopes within these proteins, one of the most successful diagnostic tests to date has been developed: cardiac troponin (cTn) assays. For the past decade, cTn has been regarded as the gold-standard marker for acute myocardial necrosis: the pathological hallmark of acute myocardial infarction (AMI). Whilst cTn is the cornerstone for ruling-out AMI in patients presenting with a suspected acute coronary syndrome (ACS), elevated cTn is frequently observed in those without clinical signs indicative of AMI, often reflecting myocardial injury of 'unknown origin'. cTn is commonly elevated in acute non-ACS conditions, as well as in chronic diseases. It is unclear why these elevations occur; yet they cannot be ignored as cTn levels in chronically unwell patients are directly correlated to prognosis. Paradoxically, improvements in assay sensitivity have meant more differential diagnoses have to be considered due to decreased specificity, since cTn is now more easily detected in these non-ACS conditions. It is important to be aware cTn is highly specific for myocardial injury, which could be attributable to a myriad of underlying causes, emphasizing the notion that cTn is an organ-specific, not disease-specific biomarker. Furthermore, the ability to detect increased cTn using high-sensitivity assays following extreme exercise is disconcerting. It has been suggested troponin release can occur without cardiomyocyte necrosis, contradicting conventional dogma, emphasizing a need to understand the mechanisms of such release. This review discusses basic troponin biology, the physiology behind its detection in serum, its use in the diagnosis of AMI, and some key concepts and experimental evidence as to why cTn can be elevated in chronic diseases.
Collapse
Affiliation(s)
- Kyung Chan Park
- 1 BHF Centre of Research Excellence, The Rayne Institute, Cardiovascular Division, King’s College London, London, UK
- 2 Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David C Gaze
- 3 Clinical Blood Sciences and Cardiology, St George’s University Hospitals NHS Trust and St George’s University of London, London, UK
- 4 Department of Biomedical Science, University of Westminster, London, UK
| | - Paul O Collinson
- 3 Clinical Blood Sciences and Cardiology, St George’s University Hospitals NHS Trust and St George’s University of London, London, UK
| | - Michael S Marber
- 1 BHF Centre of Research Excellence, The Rayne Institute, Cardiovascular Division, King’s College London, London, UK
| |
Collapse
|
14
|
Williams SA, Murthy AC, DeLisle RK, Hyde C, Malarstig A, Ostroff R, Weiss SJ, Segal MR, Ganz P. Improving Assessment of Drug Safety Through Proteomics: Early Detection and Mechanistic Characterization of the Unforeseen Harmful Effects of Torcetrapib. Circulation 2017; 137:999-1010. [PMID: 28974520 PMCID: PMC5839936 DOI: 10.1161/circulationaha.117.028213] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/08/2017] [Indexed: 01/10/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Early detection of adverse effects of novel therapies and understanding of their mechanisms could improve the safety and efficiency of drug development. We have retrospectively applied large-scale proteomics to blood samples from ILLUMINATE (Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events), a trial of torcetrapib (a cholesterol ester transfer protein inhibitor), that involved 15 067 participants at high cardiovascular risk. ILLUMINATE was terminated at a median of 550 days because of significant absolute increases of 1.2% in cardiovascular events and 0.4% in mortality with torcetrapib. The aims of our analysis were to determine whether a proteomic analysis might reveal biological mechanisms responsible for these harmful effects and whether harmful effects of torcetrapib could have been detected early in the ILLUMINATE trial with proteomics. Methods: A nested case-control analysis of paired plasma samples at baseline and at 3 months was performed in 249 participants assigned to torcetrapib plus atorvastatin and 223 participants assigned to atorvastatin only. Within each treatment arm, cases with events were matched to controls 1:1. Main outcomes were a survey of 1129 proteins for discovery of biological pathways altered by torcetrapib and a 9-protein risk score validated to predict myocardial infarction, stroke, heart failure, or death. Results: Plasma concentrations of 200 proteins changed significantly with torcetrapib. Their pathway analysis revealed unexpected and widespread changes in immune and inflammatory functions, as well as changes in endocrine systems, including in aldosterone function and glycemic control. At baseline, 9-protein risk scores were similar in the 2 treatment arms and higher in participants with subsequent events. At 3 months, the absolute 9-protein derived risk increased in the torcetrapib plus atorvastatin arm compared with the atorvastatin-only arm by 1.08% (P=0.0004). Thirty-seven proteins changed in the direction of increased risk of 49 proteins previously associated with cardiovascular and mortality risk. Conclusions: Heretofore unknown effects of torcetrapib were revealed in immune and inflammatory functions. A protein-based risk score predicted harm from torcetrapib within just 3 months. A protein-based risk assessment embedded within a large proteomic survey may prove to be useful in the evaluation of therapies to prevent harm to patients. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00134264.
Collapse
Affiliation(s)
| | | | | | - Craig Hyde
- University of California, San Francisco. Pfizer Inc., Worldwide Research and Development, Groton, CT (C.H.)
| | - Anders Malarstig
- Pfizer Inc., Worldwide Research and Development, Stockholm, Sweden (A.M.)
| | - Rachel Ostroff
- SomaLogic, Inc., Boulder, CO (S.A.W., R.K.D., R.O., S.J.W.)
| | - Sophie J Weiss
- SomaLogic, Inc., Boulder, CO (S.A.W., R.K.D., R.O., S.J.W.)
| | - Mark R Segal
- Department of Epidemiology and Biostatistics (M.R.S.)
| | - Peter Ganz
- Department of Medicine (A.C.M., P.G.) .,Division of Cardiology, Zuckerberg San Francisco General Hospital, CA (P.G.)
| |
Collapse
|