1
|
Vogl B, Sularz A, Ahn S, Gadhave R, Lilly S, Thourani V, Lindman B, Alkhouli M, Hatoum H. Analysis of Energy and Pressure in the Sinus with Different Blood Pressures after Bioprosthetic Aortic Valve Replacement. Ann Biomed Eng 2024; 52:3228-3239. [PMID: 39103737 DOI: 10.1007/s10439-024-03587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE To investigate the effect of changing systolic and diastolic blood pressures (SBP and DBP, respectively) on sinus flow and valvular and epicardial coronary flow dynamics after TAVR and SAVR. METHODS SAPIEN 3 and Magna valves were deployed in an idealized aortic root model as part of a pulse duplicating left heart flow loop simulator. Different combinations of SBP and DBP were applied to the test setup and the resulting change in total coronary flow from baseline (120/60 mmHg), effective orifice area (EOA), and left ventricular (LV) workload, with each combination, was assessed. In addition, particle image velocimetry was used to assess the Laplacian of pressure (∇ 2 P ) in the sinus, coronary and main flow velocities, the energy dissipation rate (EDR) in the sinus and the LV workload. RESULTS This study shows that under an elevated SBP, there is an increase in the total coronary flow, EOA, LV workload, peak velocities downstream of the valve,∇ 2 P , and EDR. With an elevated DBP, there was an increase in the total coronary flow and∇ 2 P . However, EOA and LV workload decreased with an increase in DBP, and EDR increased with a decrease in DBP. CONCLUSIONS Blood pressure alters the hemodynamics in the sinus and downstream flow following aortic valve replacement, potentially influencing outcomes in some patients.
Collapse
Affiliation(s)
- Brennan Vogl
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Agata Sularz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sunyoung Ahn
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Rajat Gadhave
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Scott Lilly
- Department of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Vinod Thourani
- Department of Cardiovascular Surgery, Piedmont Heart Institute, Marcus Valve Center, Atlanta, GA, USA
| | - Brian Lindman
- Division of Cardiovascular Medicine, Structural Heart and Valve Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohamad Alkhouli
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hoda Hatoum
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA.
- Health Research Institute, Center of Biocomputing and Digital Health and Institute of Computing and Cybersystems, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
2
|
Wang Y, Fu Y, Wang Q, Kong D, Wang Z, Liu J. Recent advancements in polymeric heart valves: From basic research to clinical trials. Mater Today Bio 2024; 28:101194. [PMID: 39221196 PMCID: PMC11364905 DOI: 10.1016/j.mtbio.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Valvular heart diseases (VHDs) have become one of the most prevalent heart diseases worldwide, and prosthetic valve replacement is one of the effective treatments. With the fast development of minimal invasive technology, transcatheter valves replacement has been exploring in recent years, such as transcatheter aortic valve replacement (TAVR) technology. In addition, basic research on prosthetic valves has begun to shift from traditional mechanical valves and biological valves to the development of polymeric heart valves. The polymeric heart valves (PHVs) have shown a bright future due to their advantages of longer durability, better biocompatibility and reduced cost. This review gives a brief history of the development of polymeric heart valves, provides a summary of the types of polymer materials suitable for heart leaflets and the emerging processing/preparation methods for polymeric heart valves in the basic research. Besides, we facilitate a deeper understanding of polymeric heart valve products that are currently in preclinical/clinical studies, also summary the limitations of the present researches as well as the future development trends. Hence, this review will provide a holistic understanding for researchers working in the field of prosthetic valves, and will offer ideas for the design and research of valves with better durability and biocompatibility.
Collapse
Affiliation(s)
- Yuanchi Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yulong Fu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, Nankai University School of Medicine, Tianjin 300071, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
3
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Bhat SS, Bui HT, Farnan A, Vietmeyer K, Armstrong AK, Breuer CK, Dasi LP. Development of Novel Sutureless Balloon Expandable Fetal Heart Valve Device Using Absorbable Polycaprolactone Leaflets. Ann Biomed Eng 2024; 52:386-395. [PMID: 37864043 DOI: 10.1007/s10439-023-03386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Congenital heart disease (CHD) accounts for nearly one-third of all congenital defects, and patients often require repeated heart valve replacements throughout their lives, due to failed surgical repairs and lack of durability of bioprosthetic valve implants. This objective of this study is to develop and in vitro test a fetal transcatheter pulmonary valve replacement (FTPVR) using sutureless techniques to attach leaflets, as an option to correct congenital defects such as pulmonary atresia with intact ventricular septum (PA/IVS), in utero. A balloon expandable design was analyzed using computational simulations to identify areas of failure. Five manufactured valves were assembled using the unique sutureless approach and tested in the fetal right heart simulator (FRHS) to evaluate hemodynamic characteristics. Computational simulations showed that the commissural loads on the leaflet material were significantly reduced by changing the attachment techniques. Hemodynamic analysis showed an effective orifice area of 0.08 cm2, a mean transvalvular pressure gradient of 7.52 mmHg, and a regurgitation fraction of 8.42%, calculated over 100 consecutive cardiac cycles. In conclusion, the FTPVR exhibited good hemodynamic characteristics, and studies with biodegradable stent materials are underway.
Collapse
Affiliation(s)
- Sanchita S Bhat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Office 232, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313-2412, USA
| | - Hieu T Bui
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Office 232, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313-2412, USA
| | - Anna Farnan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Office 232, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313-2412, USA
| | - Katherine Vietmeyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Office 232, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313-2412, USA
| | - Aimee K Armstrong
- The Heart Center, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH, 43205, USA
| | - Christopher K Breuer
- Department of General Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH, 43205, USA.
| | - Lakshmi Prasad Dasi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Office 232, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313-2412, USA.
| |
Collapse
|
5
|
Gregorovicova M, Lashkarinia SS, Yap CH, Tomek V, Sedmera D. Hemodynamics During Development and Postnatal Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:201-226. [PMID: 38884713 DOI: 10.1007/978-3-031-44087-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A well-developed heart is essential for embryonic survival. There are constant interactions between cardiac tissue motion and blood flow, which determine the heart shape itself. Hemodynamic forces are a powerful stimulus for cardiac growth and differentiation. Therefore, it is particularly interesting to investigate how the blood flows through the heart and how hemodynamics is linked to a particular species and its development, including human. The appropriate patterns and magnitude of hemodynamic stresses are necessary for the proper formation of cardiac structures, and hemodynamic perturbations have been found to cause malformations via identifiable mechanobiological molecular pathways. There are significant differences in cardiac hemodynamics among vertebrate species, which go hand in hand with the presence of specific anatomical structures. However, strong similarities during development suggest a common pattern for cardiac hemodynamics in human adults. In the human fetal heart, hemodynamic abnormalities during gestation are known to progress to congenital heart malformations by birth. In this chapter, we discuss the current state of the knowledge of the prenatal cardiac hemodynamics, as discovered through small and large animal models, as well as from clinical investigations, with parallels gathered from the poikilotherm vertebrates that emulate some hemodynamically significant human congenital heart diseases.
Collapse
Affiliation(s)
- Martina Gregorovicova
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Choon Hwai Yap
- Department of Bioengineering, Imperial College, London, UK
| | - Viktor Tomek
- Pediatric Cardiology, Motol University Hospital, Prague, Czech Republic
| | - David Sedmera
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Fluid Mechanical Effects of Fetal Aortic Valvuloplasty for Cases of Critical Aortic Stenosis with Evolving Hypoplastic Left Heart Syndrome. Ann Biomed Eng 2023:10.1007/s10439-023-03152-x. [PMID: 36780051 DOI: 10.1007/s10439-023-03152-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023]
Abstract
Fetuses with critical aortic stenosis (FAS) are at high risk of progression to HLHS by the time of birth (and are thus termed "evolving HLHS"). An in-utero catheter-based intervention, fetal aortic valvuloplasty (FAV), has shown promise as an intervention strategy to circumvent the progression, but its impact on the heart's biomechanics is not well understood. We performed patient-specific computational fluid dynamic (CFD) simulations based on 4D fetal echocardiography to assess the changes in the fluid mechanical environment in the FAS left ventricle (LV) directly before and 2 days after FAV. Echocardiograms of five FAS cases with technically successful FAV were retrospectively analysed. FAS compromised LV stroke volume and ejection fraction, but FAV rescued it significantly. Calculations to match simulations to clinical measurements showed that FAV approximately doubled aortic valve orifice area, but it remained much smaller than in healthy hearts. Diseased LVs had mildly stenotic mitral valves, which generated fast and narrow diastolic mitral inflow jet and vortex rings that remained unresolved directly after FAV. FAV further caused aortic valve damage and high-velocity regurgitation. The high-velocity aortic regurgitation jet and vortex ring caused a chaotic flow field upon impinging the apex, which drastically exacerbated the already high energy losses and poor flow energy efficiency of FAS LVs. Two days after the procedure, FAV did not alter wall shear stress (WSS) spatial patterns of diseased LV but elevated WSS magnitudes, and the poor blood turnover in pre-FAV LVs did not significantly improve directly after FAV. FAV improved FAS LV's flow function, but it also led to highly chaotic flow patterns and excessively high energy losses due to the introduction of aortic regurgitation directly after the intervention. Further studies analysing the effects several weeks after FAV are needed to understand the effects of such biomechanics on morphological development.
Collapse
|
8
|
Ren M, Ong C, Buist ML, Yap CH. Biventricular biaxial mechanical testing and constitutive modelling of fetal porcine myocardium passive stiffness. J Mech Behav Biomed Mater 2022; 134:105383. [DOI: 10.1016/j.jmbbm.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022]
|
9
|
Kelly JM, Anderson C, Breuer CK. The Potential Role of Regenerative Medicine on the Future Management of Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9040107. [PMID: 35448083 PMCID: PMC9030758 DOI: 10.3390/jcdd9040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The development and translation of regenerative medicine approaches for the treatment of hypoplastic left heart syndrome (HLHS) provides a promising alternative to the current standard of care. We review the strategies that have been pursued to date and those that hold the greatest promise in moving forward. Significant challenges remain. Continued scientific advances and technological breakthroughs will be required if we are to translate this technology to the clinic and move from palliative to curative treatment.
Collapse
Affiliation(s)
- John M. Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Cole Anderson
- Biomedical Engineering Graduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: ; Tel.: +1-614-722-2000
| |
Collapse
|
10
|
Blum KM, Mirhaidari G, Breuer CK. Tissue engineering: Relevance to neonatal congenital heart disease. Semin Fetal Neonatal Med 2022; 27:101225. [PMID: 33674254 PMCID: PMC8390581 DOI: 10.1016/j.siny.2021.101225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Congenital heart disease (CHD) represents a large clinical burden, representing the most common cause of birth defect-related death in the newborn. The mainstay of treatment for CHD remains palliative surgery using prosthetic vascular grafts and valves. These devices have limited effectiveness in pediatric patients due to thrombosis, infection, limited endothelialization, and a lack of growth potential. Tissue engineering has shown promise in providing new solutions for pediatric CHD patients through the development of tissue engineered vascular grafts, heart patches, and heart valves. In this review, we examine the current surgical treatments for congenital heart disease and the research being conducted to create tissue engineered products for these patients. While much research remains to be done before tissue engineering becomes a mainstay of clinical treatment for CHD patients, developments have been progressing rapidly towards translation of tissue engineering devices to the clinic.
Collapse
Affiliation(s)
- Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus OH, USA,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA.
| |
Collapse
|
11
|
Chen H, Xue L, Gong G, Pan J, Wang X, Zhang Y, Guo J, Qin L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
Graphical abstract
Collapse
|
12
|
Yan G, Liu Y, Xie M, Shi J, Qiao W, Dong N. Experimental and computational models for tissue-engineered heart valves: a narrative review. BIOMATERIALS TRANSLATIONAL 2021; 2:361-375. [PMID: 35837412 PMCID: PMC9255799 DOI: 10.12336/biomatertransl.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Valvular heart disease is currently a common problem which causes high morbidity and mortality worldwide. Prosthetic valve replacements are widely needed to correct narrowing or backflow through the valvular orifice. Compared to mechanical valves and biological valves, tissue-engineered heart valves can be an ideal substitute because they have a low risk of thromboembolism and calcification, and the potential for remodelling, regeneration, and growth. In order to test the performance of these heart valves, various animal models and other models are needed to optimise the structure and function of tissue-engineered heart valves, which may provide a potential mechanism responsible for substantial enhancement in tissue-engineered heart valves. Choosing the appropriate model for evaluating the performance of the tissue-engineered valve is important, as different models have their own advantages and disadvantages. In this review, we summarise the current state-of-the-art animal models, bioreactors, and computational simulation models with the aim of creating more strategies for better development of tissue-engineered heart valves. This review provides an overview of major factors that influence the selection and design of a model for tissue-engineered heart valve. Continued efforts in improving and testing models for valve regeneration remain crucial in basic science and translational researches. Future research should focus on finding the right animal model and developing better in vitro testing systems for tissue-engineered heart valve.
Collapse
Affiliation(s)
| | | | | | | | - Weihua Qiao
- Corresponding authors: Weihua Qiao, ; Nianguo Dong,
| | - Nianguo Dong
- Corresponding authors: Weihua Qiao, ; Nianguo Dong,
| |
Collapse
|
13
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
14
|
Bui HT, Khair N, Yeats B, Gooden S, James SP, Dasi LP. Transcatheter Heart Valves: A Biomaterials Perspective. Adv Healthc Mater 2021; 10:e2100115. [PMID: 34038627 DOI: 10.1002/adhm.202100115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Indexed: 11/11/2022]
Abstract
Heart valve disease is prevalent throughout the world, and the number of heart valve replacements is expected to increase rapidly in the coming years. Transcatheter heart valve replacement (THVR) provides a safe and minimally invasive means for heart valve replacement in high-risk patients. The latest clinical data demonstrates that THVR is a practical solution for low-risk patients. Despite these promising results, there is no long-term (>20 years) durability data on transcatheter heart valves (THVs), raising concerns about material degeneration and long-term performance. This review presents a detailed account of the materials development for THVRs. It provides a brief overview of THVR, the native valve properties, the criteria for an ideal THV, and how these devices are tested. A comprehensive review of materials and their applications in THVR, including how these materials are fabricated, prepared, and assembled into THVs is presented, followed by a discussion of current and future THVR biomaterial trends. The field of THVR is proliferating, and this review serves as a guide for understanding the development of THVs from a materials science and engineering perspective.
Collapse
Affiliation(s)
- Hieu T. Bui
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Nipa Khair
- School of Advanced Materials Discovery Colorado State University 700 Meridian Ave Fort Collins CO 80523 USA
| | - Breandan Yeats
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Shelley Gooden
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Susan P. James
- School of Advanced Materials Discovery Colorado State University 700 Meridian Ave Fort Collins CO 80523 USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| |
Collapse
|
15
|
Matsuzaki Y, Wiet MG, Boe BA, Shinoka T. The Real Need for Regenerative Medicine in the Future of Congenital Heart Disease Treatment. Biomedicines 2021; 9:478. [PMID: 33925558 PMCID: PMC8145070 DOI: 10.3390/biomedicines9050478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bioabsorbable materials made from polymeric compounds have been used in many fields of regenerative medicine to promote tissue regeneration. These materials replace autologous tissue and, due to their growth potential, make excellent substitutes for cardiovascular applications in the treatment of congenital heart disease. However, there remains a sizable gap between their theoretical advantages and actual clinical application within pediatric cardiovascular surgery. This review will focus on four areas of regenerative medicine in which bioabsorbable materials have the potential to alleviate the burden where current treatment options have been unable to within the field of pediatric cardiovascular surgery. These four areas include tissue-engineered pulmonary valves, tissue-engineered patches, regenerative medicine options for treatment of pulmonary vein stenosis and tissue-engineered vascular grafts. We will discuss the research and development of biocompatible materials reported to date, the evaluation of materials in vitro, and the results of studies that have progressed to clinical trials.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA; (Y.M.); (M.G.W.)
| | - Matthew G. Wiet
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA; (Y.M.); (M.G.W.)
| | - Brian A. Boe
- Department of Cardiology, The Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA;
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA; (Y.M.); (M.G.W.)
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA
| |
Collapse
|
16
|
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 2020; 18:92-116. [PMID: 32908285 DOI: 10.1038/s41569-020-0422-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.
Collapse
|