1
|
Su S, Myers MC, Bilder DM, Clarke A, Friends T, Petrone TV, Ryan C, Krause CM, Chen R, Li YX, Fronheiser M, Galella MA, Rose AV, Generaux CN, Zhao L, Bostwick J, Li J, Mathur A, Duclos F, Madsen CS, Wexler RR, Lawrence RM. The Discovery of C7-Substituted Norbornyl Bisamides as RXFP1 Small Molecule Agonists. J Med Chem 2025. [PMID: 40434342 DOI: 10.1021/acs.jmedchem.5c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Human relaxin-2 (relaxin, H2-RLX, RLN2), an endogenous hormone associated with mammalian pregnancy, and its cognate receptor relaxin family peptide receptor 1 (RXFP1) have been implicated as important modulators of cardiovascular function and agonism of RXFP1 may potentially be utilized for the treatment of heart failure. Exploration of chemical space around previously reported anthranilamide 2 led to the discovery of lead compound 39 with significantly improved agonist activities toward human and rodent RXFP1. Compound 39 induced a dose-dependent heart rate increase in isoflurane-anesthetized naïve rats, which is consistent with the hemodynamic profile of relaxin in rat. Compound 39 also elicited significant interpubic ligament (IPL) expansion in C57BL/6 mouse, measured with microCT imaging, which recapitulated the effect of relaxin.
Collapse
Affiliation(s)
- Shun Su
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Michael C Myers
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Donna M Bilder
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Adam Clarke
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Todd Friends
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Thomas V Petrone
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Carol Ryan
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Carol M Krause
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ruihua Chen
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Yi-Xin Li
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Matthew Fronheiser
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Michael A Galella
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Anne V Rose
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Claudia N Generaux
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Lei Zhao
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Jeff Bostwick
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Jianqing Li
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Franck Duclos
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Cort S Madsen
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ruth R Wexler
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - R Michael Lawrence
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| |
Collapse
|
2
|
Yan D, Zhan S, Guo C, Han J, Zhan L, Zhou Q, Bing D, Wang X. The role of myocardial regeneration, cardiomyocyte apoptosis in acute myocardial infarction: A review of current research trends and challenges. J Cardiol 2025; 85:283-292. [PMID: 39393490 DOI: 10.1016/j.jjcc.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE This paper aims to review the research progress in repairing injury caused by acute myocardial infarction, focusing on myocardial regeneration, cardiomyocyte apoptosis, and fibrosis. The goal is to investigate the current research trends and challenges in the field of myocardial injury repair. METHODS The review delves into the latest research on myocardial regeneration, cardiomyocyte apoptosis, and fibrosis following acute myocardial infarction. It highlights stem cell transplantation and gene therapy as key areas of current research focus, while emphasizing the significance of cardiomyocyte apoptosis and fibrosis in the myocardial injury repair process. Additionally, the review addresses the challenges and unresolved issues that require further investigation in the field of myocardial injury repair. SUMMARY Acute myocardial infarction is a prevalent cardiovascular condition that results in myocardial damage necessitating repair. Myocardial regeneration plays a crucial role in repairing myocardial injury, with current research focusing on stem cell transplantation and gene therapy. Cardiomyocyte apoptosis and fibrosis are key factors in the repair process, significantly impacting the restoration of myocardial structure and function. Nonetheless, there remain numerous challenges and unresolved issues that warrant further investigation in the realm of myocardial injury repair.
Collapse
Affiliation(s)
- Dan Yan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Shifang Zhan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chenyu Guo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jiawen Han
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Zhan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qianyi Zhou
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Dan Bing
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China.
| |
Collapse
|
3
|
Devasia AG, Shanmugham M, Ramasamy A, Bellanger S, Parry LJ, Leo CH. Therapeutic potential of relaxin or relaxin mimetics in managing cardiovascular complications of diabetes. Biochem Pharmacol 2024; 229:116507. [PMID: 39182735 DOI: 10.1016/j.bcp.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Diabetes mellitus is a metabolic disease with an escalating global prevalence. Despite the abundance and relative efficacies of current therapeutic approaches, they primarily focus on attaining the intended glycaemic targets, but patients ultimately still suffer from various diabetes-associated complications such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis. There is a need to explore innovative and effective diabetic treatment strategies that not only address the condition itself but also combat its complications. One promising option is the reproductive hormone relaxin, an endogenous ligand of the RXFP1 receptor. Relaxin is known to exert beneficial actions on the cardiovascular system through its vasoprotective, anti-inflammatory and anti-fibrotic effects. Nevertheless, the native relaxin peptide exhibits a short biological half-life, limiting its therapeutic potential. Recently, several relaxin mimetics and innovative delivery technologies have been developed to extend its biological half-life and efficacy. The current review provides a comprehensive landscape of the cardiovascular effects of relaxin, focusing on its potential therapeutic applications in managing complications associated with diabetes. The latest advancements in the development of relaxin mimetics and delivery methods for the treatment of cardiometabolic disorders are also discussed.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Laura J Parry
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
4
|
Wingert J, Meinhardt E, Sasipong N, Pott M, Lederer C, de la Torre C, Sticht C, Most P, Katus HA, Frey N, Raake PWJ, Schlegel P. Cardiomyocyte-specific RXFP1 overexpression protects against pressure overload-induced cardiac dysfunction independently of relaxin. Biochem Pharmacol 2024; 225:116305. [PMID: 38768763 DOI: 10.1016/j.bcp.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) prevalence is rising due to reduced early mortality and demographic change. Relaxin (RLN) mediates protective effects in the cardiovascular system through Relaxin-receptor 1 (RXFP1). Cardiac overexpression of RXFP1 with additional RLN supplementation attenuated HF in the pressure-overload transverse aortic constriction (TAC) model. Here, we hypothesized that robust transgenic RXFP1 overexpression in cardiomyocytes (CM) protects from TAC-induced HF even in the absence of RLN. Hence, transgenic mice with a CM-specific overexpression of human RXFP1 (hRXFP1tg) were generated. Receptor functionality was demonstrated by in vivo hemodynamics, where the administration of RLN induced positive inotropy strictly in hRXFP1tg. An increase in phospholamban-phosphorylation at serine 16 was identified as a molecular correlate. hRXFP1tg were protected from TAC without additional RLN administration, presenting not only less decline in systolic left ventricular (LV) function but also abrogated LV dilation and pulmonary congestion compared to WT mice. Molecularly, transgenic hearts exhibited not only a significantly attenuated fetal and fibrotic gene activation but also demonstrated less fibrotic tissue and CM hypertrophy in histological sections. These protective effects were evident in both sexes. Similar cardioprotective effects of hRXFP1tg were detectable in a RLN-knockout model, suggesting an alternative mechanism of receptor activation through intrinsic activity, alternative endogenous ligands or crosstalk with other receptors. In summary, CM-specific RXFP1 overexpression provides protection against TAC even in the absence of endogenous RLN. This suggests RXFP1 overexpression as a potential therapeutic approach for HF, offering baseline protection with optional RLN supplementation for specific activation.
Collapse
Affiliation(s)
- J Wingert
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - E Meinhardt
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - N Sasipong
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - M Pott
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - C Lederer
- Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
| | - C de la Torre
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - C Sticht
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - P Most
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - H A Katus
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - N Frey
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - P W J Raake
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany; Department of Internal Medicine I, University Hospital Augsburg, Augsburg University, Germany
| | - P Schlegel
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
5
|
Wu J, Luo J, Cai H, Zhu H, Lei Z, Lu Y, Gao X, Ni L, Lu Z, Hu X. Expression characteristics of lipid metabolism-related genes and correlative immune infiltration landscape in acute myocardial infarction. Sci Rep 2024; 14:14095. [PMID: 38890389 PMCID: PMC11189450 DOI: 10.1038/s41598-024-65022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid metabolism is an important part of the heart's energy supply. The expression pattern and molecular mechanism of lipid metabolism-related genes (LMRGs) in acute myocardial infarction (AMI) are still unclear, and the link between lipid metabolism and immunity is far from being elucidated. In this study, 23 Common differentially expressed LMRGs were discovered in the AMI-related mRNA microarray datasets GSE61144 and GSE60993. These genes were mainly related to "leukotriene production involved in inflammatory response", "lipoxygenase pathway", "metabolic pathways", and "regulation of lipolysis in adipocytes" pathways. 12 LMRGs (ACSL1, ADCY4, ALOX5, ALOX5AP, CCL5, CEBPB, CEBPD, CREB5, GAB2, PISD, RARRES3, and ZNF467) were significantly differentially expressed in the validation dataset GSE62646 with their AUC > 0.7 except for ALOX5AP (AUC = 0.699). Immune infiltration analysis and Pearson correlation analysis explored the immune characteristics of AMI, as well as the relationship between these identified LMRGs and immune response. Lastly, the up-regulation of ACSL1, ALOX5AP, CEBPB, and GAB2 was confirmed in the mouse AMI model. Taken together, LMRGs ACSL1, ALOX5AP, CEBPB, and GAB2 are significantly upregulated in AMI patients' blood, peripheral blood of AMI mice, myocardial tissue of AMI mice, and therefore might be new potential biomarkers for AMI.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jingyi Luo
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Zhe Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yi Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xinchen Gao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Kalyuzhin VV, Teplyakov AT, Bespalova ID, Kalyuzhina EV, Terentyeva NN, Grakova EV, Kopeva KV, Usov VY, Garganeeva NP, Pavlenko OA, Gorelova YV, Teteneva AV. Promising directions in the treatment of chronic heart failure: improving old or developing new ones? BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-181-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Unprecedented advances of recent decades in clinical pharmacology, cardiac surgery, arrhythmology, and cardiac pacing have significantly improved the prognosis in patients with chronic heart failure (CHF). However, unfortunately, heart failure continues to be associated with high mortality. The solution to this problem consists in simultaneous comprehensive use in clinical practice of all relevant capabilities of continuously improving methods of heart failure treatment proven to be effective in randomized controlled trials (especially when confirmed by the results of studies in real clinical practice), on the one hand, and in development and implementation of innovative approaches to CHF treatment, on the other hand. This is especially relevant for CHF patients with mildly reduced and preserved left ventricular ejection fraction, as poor evidence base for the possibility of improving the prognosis in such patients cannot justify inaction and leaving them without hope of a clinical improvement in their condition. The lecture consistently covers the general principles of CHF treatment and a set of measures aimed at inotropic stimulation and unloading (neurohormonal, volumetric, hemodynamic, and immune) of the heart and outlines some promising areas of disease-modifying therapy.
Collapse
Affiliation(s)
| | - A. T. Teplyakov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | | | | | | | - E. V. Grakova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - K. V. Kopeva
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - V. Yu. Usov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | | | | | | | | |
Collapse
|
7
|
Rao R, Farraha M, Logan GJ, Igoor S, Kok CY, Chong JJH, Alexander IE, Kizana E. Performance of Cardiotropic rAAV Vectors Is Dependent on Production Method. Viruses 2022; 14:v14081623. [PMID: 35893689 PMCID: PMC9341392 DOI: 10.3390/v14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Gene therapy is making significant impact on a modest, yet growing, number of human diseases. Justifiably, the preferred viral vector for clinical use is that based on recombinant adeno-associated virus (rAAV). There is a need to scale up rAAV vector production with the transition from pre-clinical models to human application. Standard production methods based on the adherent cell type (HEK293) are limited in scalability and other methods, such as those based on the baculovirus and non-adherent insect cell (Sf9) system, have been pursued as an alternative to increase rAAV production. In this study, we compare these two production methods for cardiotropic rAAVs. Transduction efficiency for both production methods was assessed in primary cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and in mice following systemic delivery. We found that the rAAV produced by the traditional HEK293 method out-performed vector produced using the baculovirus/Sf9 system in vitro and in vivo. This finding provides a potential caveat for vector function when using the baculovirus/Sf9 production system and underscores the need for thorough assessment of vector performance when using diverse rAAV production methods.
Collapse
Affiliation(s)
- Renuka Rao
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
| | - Melad Farraha
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
| | - Grant J. Logan
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia;
- Gene Therapy Research Unit, Children′s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead 2145, Australia;
| | - Sindhu Igoor
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
| | - Cindy Y. Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
| | - James J. H. Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia;
- Department of Cardiology, Westmead Hospital, Westmead 2145, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children′s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead 2145, Australia;
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia;
- Department of Cardiology, Westmead Hospital, Westmead 2145, Australia
- Correspondence:
| |
Collapse
|
8
|
Fan ZG, Xu Y, Chen X, Ji MY, Ma GS. Appropriate Dose of Dapagliflozin Improves Cardiac Outcomes by Normalizing Mitochondrial Fission and Reducing Cardiomyocyte Apoptosis After Acute Myocardial Infarction. Drug Des Devel Ther 2022; 16:2017-2030. [PMID: 35789742 PMCID: PMC9250321 DOI: 10.2147/dddt.s371506] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 01/01/2023] Open
Abstract
Objective Dapagliflozin (DAPA) has been reported to have significant cardiac protective effects on heart failure (HF). However, the dose and time, as well as the underlying mechanisms, for DAPA treatment in acute myocardial infarction (AMI) remain controversial. The aim of this study aimed to assess the efficacy and safety of DAPA treatment along with an increased concentration gradient for AMI and explore the potential mechanisms. Methods Non-diabetic Sprague-Dawley rats were used for establishing AMI models and then were treated with three different concentrations of DAPA [0.5 mg/kg, 1 mg/kg and 1.5 mg/kg, described as AMI+DAPA Low, AMI+DAPA Medium (Med) and AMI+DAPA High, respectively] for six weeks from the onsetting of AMI. Echocardiography, histological staining and Western blot were performed to assess the relevant cardiac protective effects. Mitochondrial biogenesis and myocardial apoptosis were evaluated via the electron microscopy and TUNEL assay, respectively, as well as the Immunoblotting. In vitro, H9c2 cells were subjected to hypoxic treatment to assess the efficacy of DAPA on mitochondrial biogenesis and apoptosis. Results The medium dose of DAPA treatment could significantly reduce the infarct size (P < 0.01) and the echocardiography results showed that the MI-induced damage in cardiac function got partly repaired, showing no significant difference in left ventricle ejection fraction (LVEF) versus the Sham group (Sham vs AMI+DAPA Med group: 70.47% vs 61.73%). The Western blotting results confirmed the relevant benefits and the underlying mechanisms might be through the activation of PGAM5/Drp1 signaling pathway to normalize the mitochondrial fission and reduce cardiomyocyte apoptosis. Moreover, a medium dose of DAPA treatment could avoid increased damage to the bladder endothelium following higher treatment doses. Conclusion Appropriate dose of DAPA treatment could improve the cardiac remodeling and reduce the cardiomyocyte apoptosis after AMI, without increased damage to bladder endothelium, which might be more preferred for MI patients without diabetes.
Collapse
Affiliation(s)
- Zhong-guo Fan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yang Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Ming-yue Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Department of Cardiology, Lianshui People’s Hospital, Huaian, People’s Republic of China
| | - Gen-shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|