1
|
Wang CY, Wang M, Zhao CY, Zhou Q, Zhang XY, Wang FX, Dong JM, Du CP, Zhang CL, Dang Y, Yang AJ, Dong JF, Li M. ADAMTS-13 Prevents VWF-Mediated Gastric Cancer Metastasis. Arterioscler Thromb Vasc Biol 2025. [PMID: 40336476 DOI: 10.1161/atvbaha.125.322553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Gastric cancer invades local tissue extensively and metastasizes through the circulation to remote organs. Patients with metastasized gastric cancer have poor clinical outcomes. The vasculature in the cancer niche is developed poorly, thus allowing cancer cells to be released into the circulation. However, it is poorly understood how cancer cells adhere to and transmigrate through the fully developed endothelium in remote organs and what key adhesive ligands are involved in the process. Here, we report results from a study designed to investigate the role of hyperadhesive VWF (von Willebrand factor) in promoting the pulmonary metastasis of gastric cancer. METHODS We used mouse models to investigate the roles of hyperadhesive VWF in the pulmonary metastasis of gastric cancer. The findings from these mouse models were validated through in vitro experiments that specifically examined how VWF promoted gastric cancer-derived extracellular vesicles to activate endothelial cells and analyzed established databases of patients with gastric cancer. RESULTS VWF in cancer-bearing mice became hyperadhesive and mediated the adhesion of gastric cancer-derived extracellular vesicles to the endothelium, where gastric cancer-derived extracellular vesicles caused endothelial permeability and promoted the transmigration of cancer cells to the interstitial tissue of the lungs. Reducing VWF adhesive activity by the metalloprotease ADAMTS-13 (A disintegrin and metalloprotease with thrombospondin type motifs, type 13) prevented the pulmonary metastasis of gastric cancer cells in mice. We further validated the findings in mice through targeted in vitro experiments and by associating VWF with the outcomes of patients with gastric cancer through established databases of patients with gastric cancer using bioinformatics tools. CONCLUSIONS We show how VWF becomes hyperadhesive to promote the pulmonary metastasis of gastric cancer through its interaction with gastric cancer-derived extracellular vesicles and that the hyperadhesive activity of VWF is reduced by ADAMTS-13 to prevent the metastasis.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
| | - Min Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
- Experimental Teaching Center of Basic Medicine, School of Basic Medical Science, Lanzhou University, China. (M.W.)
| | - Chan-Yuan Zhao
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
| | - Quan Zhou
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
| | - Xiao-Yu Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
| | | | - Jia-Ming Dong
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
| | - Cun-Pu Du
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
| | - Chen-Li Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
| | - Yun Dang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China (Y.D.)
| | - Ai-Jun Yang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA (J.-f.D.)
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle (J.-f.D.)
| | - Min Li
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, China. (C.-y.W., M.W., C.-y.Z., Q.Z., X.-y.Z., J.-m.D., C.-p.D., C.-l.Z., Y.D., A.-j.Y., M.L.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, China. (M.L.)
| |
Collapse
|
2
|
Wu C, Shi L, Deng Y, Chen H, Lu Y, Xiong X, Yin X. Bufalin Regulates STAT3 Signaling Pathway to Inhibit Corneal Neovascularization and Fibrosis After Alkali Burn in Rats. Curr Eye Res 2025; 50:139-147. [PMID: 39356002 DOI: 10.1080/02713683.2024.2408392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE Bufalin (BU) is a bioactive ingredient extracted from the skin and parotid venom glands of Bufo raddei, which can effectively inhibit angiogenesis. The aim of this study was to investigate whether BU could affect corneal neovascularization (CoNV). METHODS A rat CoNV model (right eye) was constructed by administration of NaOH, and the left eye served as a control. Corneal damage scores of rats were detected. Hematoxylin & eosin, TUNEL, and Masson staining examined pathological changes, apoptosis, and fibrosis of corneal tissues. Immunohistochemistry and western blotting assessed the expression of proteins. RESULTS BU intervention resulted in a significant reduction in corneal inflammatory cells, repair of corneal epithelial hyperplasia, significant reduction in stromal edema, and reduction in vascular proliferation. BU can inhibit corneal neovascularization. CONCLUSION This study demonstrated that BU inhibits CoNV, fibrosis, and inflammation by modulating the STAT3 signaling pathway, elucidating the intrinsic mechanism of its protective effect. BU has great potential in the treatment of CoNV caused by corneal alkali burns.
Collapse
Affiliation(s)
- Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lu Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yan Deng
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Ying Lu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoyan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaolong Yin
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Scala E, Othenin-Girard A. Antithrombotic Treatment for Left Ventricular Assist Devices: One Does Not Fit All. Hamostaseologie 2025; 45:80-88. [PMID: 39970904 DOI: 10.1055/a-2487-6365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
As the prevalence of heart failure is increasing globally, left ventricular assist devices (LVADs) have become essential therapeutic options in managing advanced heart failure. This review explores the development of LVAD technology, with a focus on the shift from pulsatile to continuous-flow devices, particularly the HeartMate 3, the most advanced generation of LVADs. The evolution in design has significantly enhanced patient survival and quality of life. However, hemocompatibility-related adverse events (HRAEs)-such as pump thrombosis, ischemic and hemorrhagic strokes, and gastrointestinal bleeding-remain major clinical challenges. Striking the delicate balance between preventing thromboembolic events and minimizing hemorrhagic risks remains critical in LVAD patient management. Current therapeutic strategies typically involve long-term anticoagulation with vitamin K antagonists and antiplatelet therapy, though optimal management must be individualized based on patient-specific factors and device characteristics. Emerging alternatives, including low-dose anticoagulation, direct oral anticoagulants such as apixaban, and aspirin-free regimens, offer promising potential to reduce adverse outcomes. This review also highlights the role of innovative mechanical designs in minimizing shear stress and alternative treatments in preventing complications like gastrointestinal bleeding. Despite these advancements, personalized treatment strategies are critical, as no single therapeutic regimen fits all LVAD recipients. Ongoing research into both device technology and pharmacological therapies is essential to further reduce HRAEs and improve long-term outcomes for LVAD patients.
Collapse
Affiliation(s)
- Emmanuelle Scala
- Department of Anaesthesiology, Cardiothoracic and Vascular Anaesthesia, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alexandra Othenin-Girard
- Department of Anaesthesiology, Cardiothoracic and Vascular Anaesthesia, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
4
|
Nascimbene A, Bark D, Smadja DM. Hemocompatibility and biophysical interface of left ventricular assist devices and total artificial hearts. Blood 2024; 143:661-672. [PMID: 37890145 PMCID: PMC10900168 DOI: 10.1182/blood.2022018096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT Over the past 2 decades, there has been a significant increase in the utilization of long-term mechanical circulatory support (MCS) for the treatment of cardiac failure. Left ventricular assist devices (LVADs) and total artificial hearts (TAHs) have been developed in parallel to serve as bridge-to-transplant and destination therapy solutions. Despite the distinct hemodynamic characteristics introduced by LVADs and TAHs, a comparative evaluation of these devices regarding potential complications in supported patients, has not been undertaken. Such a study could provide valuable insights into the complications associated with these devices. Although MCS has shown substantial clinical benefits, significant complications related to hemocompatibility persist, including thrombosis, recurrent bleeding, and cerebrovascular accidents. This review focuses on the current understanding of hemostasis, specifically thrombotic and bleeding complications, and explores the influence of different shear stress regimens in long-term MCS. Furthermore, the role of endothelial cells in protecting against hemocompatibility-related complications of MCS is discussed. We also compared the diverse mechanisms contributing to the occurrence of hemocompatibility-related complications in currently used LVADs and TAHs. By applying the existing knowledge, we present, for the first time, a comprehensive comparison between long-term MCS options.
Collapse
Affiliation(s)
- Angelo Nascimbene
- Advanced Cardiopulmonary Therapies and Transplantation, University of Texas, Houston, TX
| | - David Bark
- Division of Hematology and Oncology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - David M. Smadja
- Université de Paris-Cité, Innovative Therapies in Haemostasis, INSERM, Paris, France
- Hematology Department, Assistance Publique–Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
5
|
Liu W, Patel K, Wang Y, Nodzenski M, Nguyen A, Teramura G, Higgins HA, Hoogeveen RC, Couper D, Fu X, Konkle BA, Loop MS, Dong JF. Dynamic and functional linkage between von Willebrand factor and ADAMTS-13 with aging: an Atherosclerosis Risk in Community study. J Thromb Haemost 2023; 21:3371-3382. [PMID: 37574196 DOI: 10.1016/j.jtha.2023.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND von Willebrand factor (VWF) is a multimeric glycoprotein critically involved in hemostasis, thrombosis, and inflammation. VWF function is regulated by its antigen levels, multimeric structures, and the state of enzymatic cleavage. Population studies in the past have focused almost exclusively on VWF antigen levels in cross-sectional study designs. OBJECTIVE To identify subjects in the Atherosclerosis Risk in Community study who had persistently low and high VWF antigen over 10 years and to quantify longitudinal changes in the biological activities and cleavage of VWF in these subjects. METHODS We measured VWF antigen, propeptide, adhesive activities, and cleavage by ADAMTS-13 quantified using a mass spectrometry method that detected the cleaved VWF peptide EQAPNLVY, as well as coagulation factor VIII activity. RESULTS We determined the mean subject-specific increase in VWF to be 22.0 International Units (IU)/dL over 10 years, with 95% between -0.3 and 59.7 IU/dL. This aging-related increase was also detected in VWF propeptide levels, ristocetin cofactor activity, and VWF binding to collagen. We identified 4.1% and 25.0% of subjects as having persistently low (<50 IU/dL) and high (>200 IU/dL) VWF antigen, respectively. Subjects with persistently low VWF had enhanced ristocetin cofactor activity, whereas those with persistently high VWF had elevated levels of ADAMTS-13, resulting in a comparable rate of VWF cleavage between the 2 groups. CONCLUSIONS These results provide new information about the effects of aging on VWF antigens and adhesive activity and identify a functional coordination between VWF and the rate of its cleavage by ADAMTS-13.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China; Bloodworks Research Institute, Seattle, WA, USA
| | | | - Yi Wang
- Bloodworks Research Institute, Seattle, WA, USA
| | - Michael Nodzenski
- Department of Biostatistics, Collaborative Studies Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | - Ron C Hoogeveen
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David Couper
- Department of Biostatistics, Collaborative Studies Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA, USA
| | - Barbara A Konkle
- Washington Center for Bleeding Disorders, Seattle, WA, USA; Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Matthew Shane Loop
- Department of Health Outcomes Organization and Policy, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, USA; Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Phan J, Elgendi K, Javeed M, Aranda JM, Ahmed MM, Vilaro J, Al-Ani M, Parker AM. Thrombotic and Hemorrhagic Complications Following Left Ventricular Assist Device Placement: An Emphasis on Gastrointestinal Bleeding, Stroke, and Pump Thrombosis. Cureus 2023; 15:e51160. [PMID: 38283491 PMCID: PMC10811971 DOI: 10.7759/cureus.51160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
The left ventricular assist device (LVAD) is a mechanical circulatory support device that supports the heart failure patient as a bridge to transplant (BTT) or as a destination therapy for those who have other medical comorbidities or complications that disqualify them from meeting transplant criteria. In patients with severe heart failure, LVAD use has extended survival and improved signs and symptoms of cardiac congestion and low cardiac output, such as dyspnea, fatigue, and exercise intolerance. However, these devices are associated with specific hematologic and thrombotic complications. In this manuscript, we review the common hematologic complications of LVADs.
Collapse
Affiliation(s)
- Joseph Phan
- Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Kareem Elgendi
- Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Masi Javeed
- Internal Medicine, HCA Healthcare/University of South Florida Morsani College of Medicine, Graduate Medical Education: Bayonet Point Hospital, Hudson, USA
| | - Juan M Aranda
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Mustafa M Ahmed
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Juan Vilaro
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Mohammad Al-Ani
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Alex M Parker
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
7
|
Edwards AL, Wilcox CM, Beasley M, Pamboukian SV, Mannon P, Peter S. Gastrointestinal bleeding and pro-angiogenic shift in the angiopoietin axis with continuous flow left ventricular assist device implantation. Am J Med Sci 2023; 366:278-285. [PMID: 37506847 DOI: 10.1016/j.amjms.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Gastrointestinal bleeding (GIB) affects up to 40% of continuous-flow left ventricular assist device (CF-LVAD) recipients. A higher risk of GIB is seen in CF-LVAD recipients with lower device pulsatility without a known mechanism. One hypothesis is that the novel hemodynamics in CF-LVAD recipients affect angiogenesis signaling. We aimed to (1) measure serum levels of angiopoietin (Ang)-1, Ang-2, and VEGF-A in CF-LVAD recipients with and without GIB and in healthy controls and (2) evaluate correlations of those levels with hemodynamics. METHODS We recruited 12 patients with CF-LVADs (six who developed GIB after device implantation) along with 12 age-matched controls without heart failure or GIB and measured Ang-1, Ang-2, and VEGF-A levels in serum samples from each patient. RESULTS CF-LVAD recipients had significantly higher Ang-2 and lower Ang-1 levels compared to controls with no difference in VEGF-A levels. CF-LVAD recipients with GIB had lower Ang-1 levels than those without GIB. There were trends for pulse pressure to be positively correlated with Ang-1 levels and negatively correlated with Ang-2 levels in CF-LVAD recipients with no correlation observed in healthy controls. CONCLUSION CF-LVAD recipients demonstrated a shift toward a pro-angiogenic phenotype in the angiopoietin axis that is significantly associated with GIB and may be linked to low pulse pressure.
Collapse
Affiliation(s)
- Adam L Edwards
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - C Mel Wilcox
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mark Beasley
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Salpy V Pamboukian
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Peter Mannon
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Shajan Peter
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Li Y, Xi Y, Wang H, Sun A, Wang L, Deng X, Chen Z, Fan Y. Development and validation of a mathematical model for evaluating shear-induced damage of von Willebrand factor. Comput Biol Med 2023; 164:107379. [PMID: 37597407 DOI: 10.1016/j.compbiomed.2023.107379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE To develop a mathematical model for predicting shear-induced von Willebrand factor (vWF) function modification which can be used to guide ventricular assist devices (VADs) design, and evaluate the damage of high molecular weight multimers (HMWM)-vWF in VAD patients for reducing clinical complications. METHODS Mathematical models were constructed based on three morphological variations (globular vWF, unfolded vWF and degraded vWF) of vWF under shear stress conditions, in which parameters were obtained from previous studies or fitted by experimental data. Different clinical support modes (pediatric vs. adult mode), different VAD operating states (pulsation vs. constant mode) and different clinical VADs (HeartMate II, HeartWare and CentriMag) were utilized to analyze shear-induced damage of HMWM-vWF based on our vWF model. The accuracy and feasibility of the models were evaluated using various experimental and clinical cases, and the biomechanical mechanisms of HMWM-vWF degradation induced by VADs were further explained. RESULTS The mathematical model developed in this study predicted VAD-induced HMWM-vWF degradation with high accuracy (correlation with experimental data r2 > 0.99). The numerical results showed that VAD in the pediatric mode resulted in more HMWM-vWF degradation per unit time and per unit flow rate than in the adult mode. However, the total degradation of HMWM-vWF is less in the pediatric mode than in the adult mode because the pediatric mode has fewer times of blood circulation than the adult mode in the same amount of time. The ratio of HMWM-vWF degradation was lower in the pulsation mode than in the constant mode. This is due to the increased flushing of VADs in the pulsation mode, which avoids prolonged stagnation of blood in high shear regions. This study also found that the design feature, rotor size and volume of the VADs, and the superimposed regions of high shear stress and long residence time inside VADs affect the degradation of HMWM-vWF. The axial flow VADs (HeartMate II) showed higher degradation of HMWM-vWF compared to centrifugal VADs (HeartWare and CentriMag). Compared to fully magnetically suspended VADs (CentriMag), hydrodynamic suspended VADs (HeartWare) produced extremely high degradation of HWMW-vWF in its narrow hydrodynamic clearance. Finally, the study used a mathematical model of HMWM-vWF degradation to interpret the clinical statistics from a biomechanical perspective and found that minimizing the rotating speed of VADs within reasonable limits helps to reduce HWMW-vWF degradation. All predicted conclusions are supported by the experimental and clinical data. CONCLUSION This study provides a validated mathematical model to assess the shear-induced degradation of HMWM-vWF, which can help to evaluate the damage of HMWM-vWF in patients implanted with VADs for reducing clinical complications, and to guide the optimization of VADs for improving hemocompatibility.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
9
|
Wong SWK, Tey SK, Mao X, Fung HL, Xiao Z, Wong DKH, Mak L, Yuen M, Ng IO, Yun JP, Gao Y, Yam JWP. Small Extracellular Vesicle-Derived vWF Induces a Positive Feedback Loop between Tumor and Endothelial Cells to Promote Angiogenesis and Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302677. [PMID: 37387563 PMCID: PMC10502836 DOI: 10.1002/advs.202302677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular malignancy by which its growth and dissemination are largely driven by the modulation of tumor-derived small extracellular vesicles (sEVs). Proteomic profiling of circulating sEVs of control individuals and HCC patients identifies von Willibrand factor (vWF) to be upregulated progressively along HCC stages. Elevated sEV-vWF levels are found in a larger cohort of HCC-sEV samples and metastatic HCC cell lines compared to their respective normal counterparts. Circulating sEVs of late-stage HCC patients markedly augment angiogenesis, tumor-endothelial adhesion, pulmonary vascular leakiness, and metastasis, which are significantly compromised by anti-vWF antibody. The role of vWF is further corroborated by the enhanced promoting effect of sEVs collected from vWF-overexpressing cells. sEV-vWF modulates endothelial cells through an elevated level of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Mechanistically, secreted FGF2 elicits a positive feedback response in HCC via the FGFR4/ERK1 signaling pathway. The co-administration of anti-vWF antibody or FGFR inhibitor significantly improves the treatment outcome of sorafenib in a patient-derived xenograft mouse model. This study reveals mutual stimulation between HCC and endothelial cells by tumor-derived sEVs and endothelial angiogenic factors, facilitating angiogenesis and metastasis. It also provides insights into a new therapeutic strategy involving blocking tumor-endothelial intercellular communication.
Collapse
Affiliation(s)
- Samuel Wan Ki Wong
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Sze Keong Tey
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of SurgerySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Xiaowen Mao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Hiu Ling Fung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Zhi‐Jie Xiao
- Research CentreThe Seventh Affiliated HospitalSun Yat‐sen University518107ShenzhenP. R. China
| | - Danny Ka Ho Wong
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhuJiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| |
Collapse
|
10
|
Li L, Li F, Bai X, Jia H, Wang C, Li P, Zhang Q, Guan S, Peng R, Zhang S, Dong JF, Zhang J, Xu X. Circulating extracellular vesicles from patients with traumatic brain injury induce cerebrovascular endothelial dysfunction. Pharmacol Res 2023; 192:106791. [PMID: 37156450 DOI: 10.1016/j.phrs.2023.106791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Endothelial dysfunction is a key proponent of pathophysiological process of traumatic brain injury (TBI). We previously demonstrated that extracellular vesicles (EVs) released from injured brains led to endothelial barrier disruption and vascular leakage. However, the molecular mechanisms of this EV-induced endothelial dysfunction (endotheliopathy) remain unclear. Here, we enriched plasma EVs from TBI patients (TEVs), and detected high mobility group box 1 (HMGB1) exposure to 50.33 ± 10.17% of TEVs and the number of HMGB1+TEVs correlated with injury severity. We then investigated for the first time the impact of TEVs on endothelial function using adoptive transfer models. We found that TEVs induced dysfunction of cultured human umbilical vein endothelial cells and mediated endothelial dysfunction in both normal and TBI mice, which were propagated through the HMGB1-activated receptor for advanced glycation end products (RAGE)/Cathepsin B signaling, and the resultant NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and canonical caspase-1/gasdermin D (GSDMD)-dependent pyroptosis. Finally, von Willebrand factor (VWF) was detected on the surface of 77.01 ± 7.51% of HMGB1+TEVs. The TEV-mediated endotheliopathy was reversed by a polyclonal VWF antibody, indicating that VWF might serve a coupling factor that tethered TEVs to ECs, thus facilitating HMGB1-induced endotheliopathy. These results suggest that circulating EVs isolated from patients with TBI alone are sufficient to induce endothelial dysfunction and contribute to secondary brain injury that are dependent on immunologically active HMGB1 exposed on their surface. This finding provided new insight for the development of potential therapeutic targets and diagnostic biomarkers for TBI.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Fanjian Li
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Haoran Jia
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Cong Wang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Peng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, 199 You'anmen Outer Street, Beijing, China
| | - Qiaoling Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Siyu Guan
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Ruilong Peng
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Jing-Fei Dong
- Bloodworks Research Institute and Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jianning Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China.
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| |
Collapse
|
11
|
van den Berg J, Haslbauer JD, Stalder AK, Romanens A, Mertz KD, Studt JD, Siegemund M, Buser A, Holbro A, Tzankov A. Von Willebrand factor and the thrombophilia of severe COVID-19: in situ evidence from autopsies. Res Pract Thromb Haemost 2023; 7:100182. [PMID: 37333991 PMCID: PMC10192064 DOI: 10.1016/j.rpth.2023.100182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 06/20/2023] Open
Abstract
Background COVID-19 is accompanied by a hypercoagulable state and characterized by microvascular and macrovascular thrombotic complications. In plasma samples from patients with COVID-19, von Willebrand factor (VWF) levels are highly elevated and predictive of adverse outcomes, especially mortality. Yet, VWF is usually not included in routine coagulation analyses, and histologic evidence of its involvement in thrombus formation is lacking. Objectives To determine whether VWF, an acute-phase protein, is a bystander, ie, a biomarker of endothelial dysfunction, or a causal factor in the pathogenesis of COVID-19. Methods We compared autopsy samples from 28 patients with lethal COVID-19 to those from matched controls and systematically assessed for VWF and platelets by immunohistochemistry. The control group comprised 24 lungs, 23 lymph nodes, and 9 hearts and did not differ significantly from the COVID-19 group in age, sex, body mass index (BMI), blood group, or anticoagulant use. Results In lungs, assessed for platelets by immunohistochemistry for CD42b, microthrombi were more frequent in patients with COVID-19 (10/28 [36%] vs 2/24 [8%]; P = .02). A completely normal pattern of VWF was rare in both groups. Accentuated endothelial staining was found in controls, while VWF-rich thrombi were only found in patients with COVID-19 (11/28 [39%] vs 0/24 [0%], respectively; P < .01), as were NETosis thrombi enriched with VWF (7/28 [25%] vs 0/24 [0%], respectively; P < .01). Forty-six percent of the patients with COVID-19 had VWF-rich thrombi, NETosis thrombi, or both. Trends were also seen in pulmonary draining lymph nodes (7/20 [35%] vs 4/24 [17%]; P = .147), where the overall presence of VWF was very high. Conclusion We provide in situ evidence of VWF-rich thrombi, likely attributable to COVID-19, and suggest that VWF may be a therapeutic target in severe COVID-19.
Collapse
Affiliation(s)
- Jana van den Berg
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jasmin D Haslbauer
- Department of Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anna K Stalder
- Department of Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Anna Romanens
- Department of Oncology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Kirsten D Mertz
- Department of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jan-Dirk Studt
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Martin Siegemund
- Intensive Care Unit, Department of Acute Medicine, University Hospital, Basel, Switzerland
| | - Andreas Buser
- Department of Hematology, University Hospital Basel, Basel, Switzerland
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
| | - Andreas Holbro
- Department of Hematology, University Hospital Basel, Basel, Switzerland
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
| | - Alexandar Tzankov
- Department of Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
12
|
Cai W, Wang M, Wang CY, Zhao CY, Zhang XY, Zhou Q, Zhao WJ, Yang F, Zhang CL, Yang AJ, Dong JF, Li M. Extracellular vesicles, hyperadhesive von willebrand factor, and outcomes of gastric cancer: a clinical observational study. Med Oncol 2023; 40:140. [PMID: 37031314 DOI: 10.1007/s12032-023-01950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/12/2023] [Indexed: 04/10/2023]
Abstract
Von Willebrand factor (VWF) is an adhesive ligand critical for maintaining hemostasis. However, it has also been increasingly recognized for its role in cancer development because it has been shown to mediate the adhesion of cancer cells to endothelial cells, promote the epithelial-mesenchymal transition, and enhance angiogenesis. We have previously shown that gastric cancer cells synthesize VWF, which mediates the interaction between the cancer and endothelial cells to promote cancer growth. Here, we report results from a clinical observational study that demonstrate the association of VWF in plasma and on the surface of extracellular vesicles (EVs) with the pathological characteristics of gastric cancer. We found that patients with gastric cancer had elevated and intrinsically hyperadhesive VWF in their peripheral blood samples. VWF was detected on the surface of EVs from cancer cells, platelets, and endothelial cells. Higher levels of these VWF-bound EVs were associated with cancer aggression and poor clinical outcomes for patients. These findings suggest that VWF+ EVs from different cell types serve collectively as a new class of biomarkers for the outcome assessment of gastric cancer patients.
Collapse
Affiliation(s)
- Wei Cai
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
- Gansu Provincial Hospital, Lanzhou, China
| | - Min Wang
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
- School of Basic Medical Sciences, Institute of Integrated Traditional Chinese and Western Medicine, Lanzhou University, Lanzhou, China
| | - Chen-Yu Wang
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
| | - Chan-Yuan Zhao
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
| | - Xiao-Yu Zhang
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
| | - Quan Zhou
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
| | - Wen-Jie Zhao
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
| | - Feng Yang
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
| | - Chen-Li Zhang
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China
| | - Ai-Jun Yang
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, USA.
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Min Li
- School of Basic Medical Sciences, Institute of Pathology, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
| |
Collapse
|